10.函數(shù)y=Asin(ωx+φ)+2(A>0,ω>0,0<φ<2π)的圖象如圖所示,則ω=3,φ=$\frac{π}{3}$.

分析 首先根據(jù)函數(shù)的圖象得到最小正周期T,進(jìn)而根據(jù)周期公式可求ω,再根據(jù)平衡點(diǎn)利用五點(diǎn)作圖法求出φ,即可得解.

解答 解:∵由函數(shù)圖象可知,T=2($\frac{5π}{9}$-$\frac{2π}{9}$)=$\frac{2π}{3}$,
∴ω=$\frac{2π}{T}$=3,
∵函數(shù)圖象過點(diǎn)($\frac{2π}{9}$,2),
∴Asin(3×$\frac{2π}{9}$+φ)+2=2,由五點(diǎn)法作圖可得:3×$\frac{2π}{9}$+φ=π,
∴解得:φ=$\frac{π}{3}$.
故答案為:3,$\frac{π}{3}$.

點(diǎn)評(píng) 解決此類問題的關(guān)鍵是求φ,首先根據(jù)函數(shù)的圖象得到ω,再根據(jù)最值點(diǎn)或者平衡點(diǎn)求出所有的φ,進(jìn)而根據(jù)φ的范圍求出答案即可,注意在代入已知點(diǎn)時(shí)最好代入最值點(diǎn),因?yàn)樵谝粋(gè)周期內(nèi)只有一個(gè)最大值,一個(gè)最小值,而平衡點(diǎn)卻有兩個(gè),假如代入的是平衡點(diǎn)則需要根據(jù)函數(shù)的單調(diào)性再來判定φ的取值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.(1)若C202x=C2016-x,求實(shí)數(shù)x的值;
(2)已知(1+ax)3+(1-x)5的展開式中x3的系數(shù)為-2,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)y=sin($\frac{2015}{2}$π-x)是(  )
A.奇函數(shù)B.偶函數(shù)
C.非奇非偶函數(shù)D.既是奇函數(shù)又是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在某項(xiàng)測(cè)量中,測(cè)量結(jié)果X服從正態(tài)分布N(2,σ2)(σ>0),若X在(0,2)內(nèi)取值的概率為0.4,則X在(-∞,4)內(nèi)取值的概率為(  )
A.0.1B.0.2C.0.8D.0.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知命題P:“若b2=ac(a,b,c∈R),則a,b,c成等比數(shù)列”,q:“函數(shù)f(x)=cos($\frac{π}{2}$+x)是奇函數(shù)”,則下列命題為真命題的是( 。
A.p∨qB.p∧qC.p∨¬qD.¬p∧¬q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知a滿足方程x+lgx=4,b滿足方程x+10x=4,函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+(a+b)x+2,x≤0}\\{2,x>0}\end{array}\right.$,則關(guān)于x的方程f(x)=x的所有實(shí)數(shù)根之和是(  )
A.2B.0C.-3D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某人騎自行車上班,第一條路線較短但擁擠,到達(dá)時(shí)間X(分鐘)服從正態(tài)分布N(5,1);第二條路較長但不擁擠.X服從正態(tài)分布N(6,0.16),有一天他出發(fā)時(shí)離點(diǎn)名時(shí)間還有7分鐘,問他應(yīng)選哪一條路線?若離點(diǎn)名時(shí)間還有6.5分鐘,問他應(yīng)選哪一條路線(已知Φ(3.9)=1.000,Φ(2)=0.9772,Φ(2.5)=0.9938,Φ(1.5)=0.9332,Φ(1.25)=0.8944,)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在任意兩個(gè)正整數(shù)m,n之間定義一種運(yùn)算關(guān)系“*”:(m+1)*n=m*n+2,m*(n+1)=m*n一1,且規(guī)定1*1=1.
(1)求2*3的值;
(2)求2016*2016的值;
(3)試求m*n關(guān)于m,n的代數(shù)表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若$\frac{cosx-sinx}{cosx+sinx}$=2,則sin2x-sin2x=$\frac{7}{10}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案