1.函數(shù)y=sin($\frac{2015}{2}$π-x)是( 。
A.奇函數(shù)B.偶函數(shù)
C.非奇非偶函數(shù)D.既是奇函數(shù)又是偶函數(shù)

分析 利用誘導公式、余弦函數(shù)的奇偶性,得出結(jié)論.

解答 解:函數(shù)y=sin($\frac{2015}{2}$π-x)=sin(1006π+3•$\frac{π}{2}$-x)=-cosx,
故它是偶函數(shù),
故選:B.

點評 本題主要考查誘導公式、余弦函數(shù)的奇偶性,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

11.命題“對于任意角θ,cos4θ-sin4θ=cos2θ”的證明:“cos4θ-sin4θ=(cos2θ-sin2θ)(cos2θ+sin2θ)=cos2θ-sin2θ=cos2θ.”該過程應用了( 。
A.分析法B.綜合法C.間接證明法D.反證法

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.下面表示同一集合的是(  )
A.M={(1,2)},N={(2,1)}B.M={1,2},N={(2,1)}
C.M=∅,N={∅}D.M={x︳x2-3x+2=0},N={1,2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.函數(shù)f(x)=sin(2x+$\frac{π}{3}$)的周期為π,在(0,$\frac{π}{2}$]內(nèi)的值域為[-$\frac{\sqrt{3}}{2}$,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知θ為鈍角,且sinθ+cosθ=$\frac{1}{5}$,則tan2θ=( 。
A.-$\frac{24}{7}$B.$\frac{24}{7}$C.-$\frac{7}{24}$D.$\frac{7}{24}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若sinα=-$\frac{3}{5}$,α是第三象限角,則cos(α+$\frac{π}{4}$)=(  )
A.$-\frac{{7\sqrt{2}}}{10}$B.$\frac{{7\sqrt{2}}}{10}$C.$-\frac{{\sqrt{2}}}{10}$D.$\frac{{\sqrt{2}}}{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知cos(2π-α)=$\frac{3}{4}$,α∈(-$\frac{π}{2}$,0),則sin2α的值為(  )
A.$\frac{3}{8}$B.$-\frac{3}{8}$C.$\frac{{3\sqrt{7}}}{8}$D.-$\frac{{3\sqrt{7}}}{8}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.函數(shù)y=Asin(ωx+φ)+2(A>0,ω>0,0<φ<2π)的圖象如圖所示,則ω=3,φ=$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知等差數(shù)列{an},a1=26,Sn為它的前n項和,S3=S11,求Sn的最大值.

查看答案和解析>>

同步練習冊答案