5.已知命題P:“若b2=ac(a,b,c∈R),則a,b,c成等比數(shù)列”,q:“函數(shù)f(x)=cos($\frac{π}{2}$+x)是奇函數(shù)”,則下列命題為真命題的是(  )
A.p∨qB.p∧qC.p∨¬qD.¬p∧¬q

分析 分別求出p,q的真假,從而判斷出復合命題的真假.

解答 解:對于命題p:若b2=ac,
不妨取a=b=c=0,
顯然滿足題意,但是不是等比數(shù)列,
故該命題為假命題,
對于命題q:“函數(shù)f(x)=cos($\frac{π}{2}$+x)=-sinx是奇函數(shù)”,
故命題q是真命題,
故p∨q是真命題,
故選:A.

點評 本題考查了復合命題的判斷,考查三角函數(shù)以及數(shù)列問題,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

15.某位同學為了研究氣溫對飲料銷售的影響,經(jīng)過對某小賣部的統(tǒng)計,得到一個賣出的某種飲料杯數(shù)與當天氣溫的對比表.他分別記錄了3月21日至3月25日的白天平均氣溫x(℃)與該小賣部的這種飲料銷量y(杯),得到如下數(shù)據(jù)
日    期3月21日3月22日3月23日3月24日3月25日
平均氣溫x(°C)810141112
銷量y(杯)2125352628
(1)若先從這五組數(shù)據(jù)中任取2組,求取出的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;
(2)請根據(jù)所給五組數(shù)據(jù),求出y關于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(3)根據(jù)(2)中所得的線性回歸方程,若天氣預報3月26日的白天平均氣溫7(℃),請預測小賣部的這種飲料的銷量.(參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知θ為鈍角,且sinθ+cosθ=$\frac{1}{5}$,則tan2θ=( 。
A.-$\frac{24}{7}$B.$\frac{24}{7}$C.-$\frac{7}{24}$D.$\frac{7}{24}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知cos(2π-α)=$\frac{3}{4}$,α∈(-$\frac{π}{2}$,0),則sin2α的值為( 。
A.$\frac{3}{8}$B.$-\frac{3}{8}$C.$\frac{{3\sqrt{7}}}{8}$D.-$\frac{{3\sqrt{7}}}{8}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.設X~N(1,4),試求(1)P(-1<X≤3);(2)P(3<X≤5)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.函數(shù)y=Asin(ωx+φ)+2(A>0,ω>0,0<φ<2π)的圖象如圖所示,則ω=3,φ=$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知x,y滿足不等式組$\left\{\begin{array}{l}{x-y≤1}\\{x+2y≤2}\\{x≥1}\end{array}\right.$,且z=2x-y+a(a為常數(shù))的最大值為2,則z的最小值為( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-$\frac{7}{6}$D.$\frac{7}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知P(t,t),t∈R,點M是圓O1:x2+(y-1)2=$\frac{1}{4}$上的動點,點N是圓O2:(x-2)2+y2=$\frac{1}{4}$上的動點,求PN-PM的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足,|$\overrightarrow{a}$|=2,|$\overrightarrow$|=5,$\overrightarrow{a}$•$\overrightarrow$=6,λ∈R,則|$\overrightarrow{a}$-λ$\overrightarrow$|的取值范圍是[$\frac{8}{5}$,+∞).

查看答案和解析>>

同步練習冊答案