【題目】已知函數(shù) , ),是自然對數(shù)的底數(shù).

(Ⅰ)當, 時,求函數(shù)的零點個數(shù);

(Ⅱ)若,求上的最大值.

【答案】(Ⅰ)2;(Ⅱ)見解析.

【解析】試題分析: ,由導數(shù)性質(zhì)得是(0,+∞)上的增函數(shù),是(-∞,0)上的減函數(shù),由此能求出f(x)的零點個數(shù).
)當x[-1,1]時, ,由導數(shù)性質(zhì)得f(x)是[-1,0]上的減函數(shù),[0,1]上的增函數(shù),由此利用導數(shù)性質(zhì)和構(gòu)造法能求出a的取值范圍.

試題解析:

,,

時, ,,故上的增函數(shù),

時, ,,故上的減函數(shù),

, ,∴存在上的唯一零點;

,∴存在上的唯一零點,

所以的零點個數(shù)為2.

,

時,由,可知, ,,

時,由,可知 ,

時, ,

上的減函數(shù), 上的增函數(shù),

∴當時, , 中的較大者.

,設(shè)),

(當且僅當時等號成立),

上單調(diào)遞增,而,

∴當時, ,即時, ,

上的最大值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,直線

1)若直線與圓交于不同的兩點,當時,求實數(shù)的值;

2)若是直線上的動點,過作圓的兩條切線,切點為,試探究:直是否過定點.若存在,請求出定點的坐標;否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某鎮(zhèn)在政府精準扶貧的政策指引下,充分利用自身資源,大力發(fā)展養(yǎng)殖業(yè),以增加收入.政府計劃共投入72萬元,全部用于甲、乙兩個合作社,每個合作社至少要投入15萬元,其中甲合作社養(yǎng)魚,乙合作社養(yǎng)雞,在對市場進行調(diào)研分析發(fā)現(xiàn)養(yǎng)魚的收益、養(yǎng)雞的收益與投入(單位:萬元)滿足.設(shè)甲合作社的投入為(單位:萬元),兩個合作社的總收益為(單位:萬元).

1)若兩個合作社的投入相等,求總收益;

2)試問如何安排甲、乙兩個合作社的投入,才能使總收益最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量,向量,且函數(shù).

(1)求函數(shù)的單調(diào)遞增區(qū)間及其對稱中心;

(2)中,角A,BC所對的邊分別為a,bc且角A滿足.,BC邊上的中線長為3,求的面積S.

(3)將函數(shù)的圖像向左平移個長度單位,向下平移個長度單位,再橫坐標不變,縱坐標縮短為原來的后得到函數(shù)的圖像,令函數(shù)的最小值為,求正實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若三棱錐的四個面都為直角三角形,平面,,,則三棱錐中最長的棱長為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列說法:

①“”是“”的充分不必要條件;

②定義在上的偶函數(shù)的最大值為30;

③命題“,”的否定形式是“”.其中正確說法的個數(shù)為

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前n項和, 是等差數(shù)列,且.

)求數(shù)列的通項公式;

)令.求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,

(1)求不等式的解集;

(2)若對一切,均有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種體育比賽的規(guī)則是:進攻隊員與防守隊員均在安全線的垂線上(為垂足),且分別位于距的點和點處,進攻隊員沿直線向安全線跑動,防守隊員沿直線方向攔截,設(shè)交于點,若在點,防守隊員比進攻隊員先到或同時到,則進攻隊員失敗,已知進攻隊員速度是防守隊員速度的兩倍,且他們雙方速度不變,問進攻隊員的路線應為什么方向才能取勝?

查看答案和解析>>

同步練習冊答案