【題目】給出下列說法:
①“”是“”的充分不必要條件;
②定義在上的偶函數(shù)的最大值為30;
③命題“,”的否定形式是“,”.其中正確說法的個數(shù)為
A. 0 B. 1 C. 2 D. 3
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)若是奇函數(shù),求的值,并判斷的單調(diào)性(不用證明);
(2)若函數(shù)在區(qū)間(0,1)上有兩個不同的零點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) f (x) = x ex (xR)
(Ⅰ)求函數(shù) f (x)的單調(diào)區(qū)間和極值;
(Ⅱ)若x (0, 1), 求證: f (2 x) > f (x);
(Ⅲ)若x1 (0, 1), x2(1, +∞), 且 f (x1) = f (x2), 求證: x1 + x2 > 2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(, , ),是自然對數(shù)的底數(shù).
(Ⅰ)當(dāng), 時,求函數(shù)的零點個數(shù);
(Ⅱ)若,求在上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)的極小值;
(2)設(shè)函數(shù),試問:在定義域內(nèi)是否存在三個不同的自變量使得的值相等,若存在,請求出的范圍,若不存在,請說明理由?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)節(jié)能降耗技術(shù)改造后,在生產(chǎn)某產(chǎn)品過程中的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸)的幾組對應(yīng)數(shù)據(jù)如表所示:
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
若根據(jù)表中數(shù)據(jù)得出y關(guān)于x的線性回歸方程為0.7x+a,若生產(chǎn)7噸產(chǎn)品,預(yù)計相應(yīng)的生產(chǎn)能耗為( )噸.
A.5.25B.5.15C.5.5D.9.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖是某地區(qū)2000年至2016年環(huán)境基礎(chǔ)設(shè)施投資額(單位:億元)的折線圖.
為了預(yù)測該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額,建立了與時間變量的兩個線性回歸模型.根據(jù)2000年至2016年的數(shù)據(jù)(時間變量的值依次為)建立模型①:;根據(jù)2010年至2016年的數(shù)據(jù)(時間變量的值依次為)建立模型②:.
(1)分別利用這兩個模型,求該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測值;
(2)你認為用哪個模型得到的預(yù)測值更可靠?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左、右焦點分別為,,左頂點為,離心率為,點是橢圓上的動點,的面積的最大值為.
(1)求橢圓的方程;
(2)設(shè)經(jīng)過點的直線與橢圓相交于不同的兩點,,線段的中垂線為.若直線與直線相交于點,與直線相交于點,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com