分析 由圖象得到函數(shù)周期,利用周期公式求得ω,由五點作圖的第一點求得φ的值,從而可求函數(shù)解析式,利用特殊角的三角函數(shù)值即可求值得解.
解答 解:∵由圖可知,T=$\frac{11π}{12}$-(-$\frac{π}{12}$)=π.
∴ω=$\frac{2π}{T}$=$\frac{2π}{π}$=2;
∵由五點作圖第一點知,2×(-$\frac{π}{12}$)+φ=0,得φ=$\frac{π}{6}$.
∴y=2sin(2x+$\frac{π}{6}$),
∴f($\frac{π}{3}$)=2sin(2×$\frac{π}{3}$+$\frac{π}{6}$)=2sin$\frac{5π}{6}$=1.
故答案為:1.
點評 本題考查了由y=Asin(ωx+φ)的部分圖象求解函數(shù)解析式,關鍵是掌握由五點作圖的某一點求φ,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{3}^{-n}-3}{2}$ | B. | $\frac{{3}^{1-n}-3}{2}$ | C. | $\frac{{3}^{n}-3}{2}$ | D. | $\frac{{3}^{n+1}-3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $(\frac{7}{9},\frac{7}{3})$ | B. | $(-\frac{7}{9},\frac{7}{3})$ | C. | $(\frac{7}{9},-\frac{7}{3})$ | D. | $(-\frac{7}{9},-\frac{7}{3})$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|-2≤x<4} | B. | {x|x≤3或x≥4} | C. | {x|-2≤x≤一1} | D. | {x|-1≤x≤3} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com