10.若直線4x+3y+1=0的斜率為k,在y軸上的截距為b,則( 。
A.k=-$\frac{4}{3}$,b=$\frac{1}{3}$B.k=-$\frac{4}{3}$,b=-$\frac{1}{3}$C.k=$\frac{4}{3}$,b=$\frac{1}{3}$D.k=$\frac{4}{3}$,b=-$\frac{1}{3}$

分析 由直線方程4x+3y+1=0化為斜截式:y=-$\frac{4}{3}$x-$\frac{1}{3}$.即可得出.

解答 解:由直線方程3x+2y-6=0化為斜截式:y=-$\frac{4}{3}$x-$\frac{1}{3}$.
可得斜率k=-$\frac{4}{3}$,在y軸上的截距為b=-$\frac{1}{3}$.
故選:B.

點評 本題考查了直線的斜截式、斜率與截距,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖,在直角梯形ABCD中,AB∥DC,AD⊥AB,AD=AB=2,DC=4,點M是梯形ABCD內(nèi)或邊界上的一個動點,點N是DC邊的中點,則$\overrightarrow{AM}•\overrightarrow{AN}$的最大值是12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.極坐標方程分別是ρ=2cosθ和ρ=2sinθ的兩個圓的圓心距是(  )
A.2B.$\sqrt{2}$C.1D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{1≤x≤2}\\{2≤x+2y≤4}\\{\;}\end{array}\right.$,則(x+1)2+(y+2)2的取值范圍為[$\frac{41}{4}$,18].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)α為銳角,若$sin({α+\frac{π}{6}})=\frac{3}{5}$,則$cos({2α+\frac{π}{12}})$的值為$\frac{31}{50}\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖所示,設(shè)a、b為異面直線,AB⊥a于A,AB⊥b于B
(1)如圖1,α為平面,若a∥α,b∥α.求證:AB⊥α;
(2)如圖2,若a⊥α,b⊥β.α∩β=c.求證:AB∥c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,D、E分別為AB、BC的中點,且$\overrightarrow{AB}•\overrightarrow{CD}$=$\overrightarrow{BC}•\overrightarrow{AE}$,外接圓的半徑為1.
(1)求證:0<B≤$\frac{π}{3}$;
(2)求a2+c2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知等比數(shù)列{an}滿足:a1+a3=10,a4+a6=$\frac{5}{4}$,則{an}的通項公式an=(  )
A.$\frac{1}{{2}^{n-4}}$B.$\frac{1}{{2}^{n-3}}$C.$\frac{1}{{2}^{n-3}}$+4D.$\frac{1}{{2}^{n-2}}$+6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知f(x)=ex-ax.
(1)若對一切x∈R,f(x)≥1恒成立,求實數(shù)a的取值集合;
(2)若方程f(x)=a(lnx-x+1)(a>0)有兩個不等的實數(shù)根,x1,x2(0<x1<x2),求證:$\frac{1}{a}$<x1<1<x2<a.

查看答案和解析>>

同步練習(xí)冊答案