【題目】電視傳媒公司為了解某地區(qū)觀眾對某體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調查,其中女性有55名,下面是根據(jù)調查結果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:

將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為體育迷”.

(1)根據(jù)已知條件完成下面的22列聯(lián)表,并據(jù)此資料你是否認為體育迷與性別有關?

非體育迷

體育迷

合計

10

55

合計

(2)將上述調查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的體育迷人數(shù)為X.若每次抽取的結果是相互獨立的,求X的分布列,期望E(X)和方差D(X).

附:.

P(K2k)

0.05

0.01

k

3.841

6.635

【答案】(1)答案見解析;(2)答案見解析.

【解析】試題分析:(1)根據(jù)所給的頻率分布直方圖得出數(shù)據(jù)列出列聯(lián)表,再代入計算公式,求出的值,即可比較得到結論;

(2)由題意,可得從觀眾中抽取到一名“體育迷”的概率為,由于,從而給出分布列,用公式即可求得數(shù)學期望

試題解析:

(1)由頻率分布直方圖可知,在抽取的100人中,體育迷25人,從而22列聯(lián)表如下:

非體育迷

體育迷

合計

30

15

45

45

10

55

合計

75

25

100

22列聯(lián)表中的數(shù)據(jù)代入公式計算,得

K2===≈3.030.

因為3.030<3.841,所以我們沒有充分理由認為體育迷與性別有關.

(2)由頻率分布直方圖知抽到體育迷的頻率為0.25,將頻率視為概率,即從觀眾中抽取一名體育迷的概率.由題意知X~B(3,),從而X的分布列為

X

0

1

2

3

P

E(X)=np=3=.D(X)=np(1-p)=3

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點P0,-2),橢圓E 的離心率為,F是橢圓E的右焦點,直線PF的斜率為2,O為坐標原點.

1)求橢圓E的方程;

2)直線l被圓Ox2+y2=3截得的弦長為3,且與橢圓E交于A、B兩點,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)xax2b·ln x,曲線yf(x)P(1,0),且在P點處的切線斜率為2.

(1)a,b的值;

(2)證明:f(x)≤2x2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)求fx)的最小值;

(2)若方程x2+1=-x3+2x2+mxx>0)有兩個正根,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在以A,B,C,D,E,F(xiàn)為頂點的五面體中,面ABEF為正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E與二面角C﹣BE﹣F都是60°.

(1)證明平面ABEF⊥平面EFDC;
(2)求二面角E﹣BC﹣A的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C1的參數(shù)方程為 (t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ2sin θ.

(1)C1的參數(shù)方程化為極坐標方程;

(2)C1C2交點的極坐標(ρ≥0,0≤θ<2π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,角對的邊分別為,已知.

)若,求的取值范圍;

)若,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,四棱錐P-ABCD中,ABCD為正方形,分別是線段的中點.

求證:(1)BC∥平面EFG;

(2)平面EFG⊥平面PAB

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)的定義域為R.當x<0時,f(x)=x3﹣1;當﹣1≤x≤1時,f(﹣x)=﹣f(x);當x> 時,f(x+ )=f(x﹣ ).則f(6)=(  )
A.﹣2
B.﹣1
C.0
D.2

查看答案和解析>>

同步練習冊答案