【題目】長(zhǎng)方體ABCD﹣A1B1C1D1中,底面ABCD是正方形,AA1=2,AB=1,E是DD1上的一點(diǎn).
(1)求異面直線AC與B1D所成的角;
(2)若B1D⊥平面ACE,求三棱錐A﹣CDE的體積.

【答案】
(1)解:以D為原點(diǎn),DA、DC、DD1所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系.

依題意,D(0,0,0),A(1,0,0),C(0,1,0),B1(1,1,2),

,

,

∴異面直線AC與B1D所成的角為


(2)解:設(shè)E(0,0,a),則

∵B1D⊥平面ACE,AE平面ACE,∴B1D⊥AE.

,∴﹣1+2a=0,

∴VACDE=VEADC= =


【解析】(1)建立如圖所示的空間直角坐標(biāo)系,利用異面直線的方向向量的夾角即可得到此兩條異面直線所成的角;(2)利用線面垂直的性質(zhì)定理即可得到點(diǎn)E的坐標(biāo),利用VACDE=VEADC即可得到體積.
【考點(diǎn)精析】掌握異面直線及其所成的角是解答本題的根本,需要知道異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點(diǎn),作另一條的平行線;2、補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長(zhǎng)方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正三棱錐P﹣ABC的外接球的球心O滿足 =0,則二面角A﹣PB﹣C的正弦值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: =1(a>b>0)經(jīng)過(guò)點(diǎn)( ,1),且離心率為
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)M、N是橢圓C上的點(diǎn),直線OM與ON(O為坐標(biāo)原點(diǎn))的斜率之積為﹣ ,若動(dòng)點(diǎn)P滿足 ,試探究,是否存在兩個(gè)定點(diǎn)F1 , F2 , 使得|PF1|+|PF2|為定值?若存在,求F1 , F2的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)A,B,C,D在同一個(gè)球的球面上,AB=BC=1,∠ABC=120°,若四面體ABCD體積的最大值為 ,則這個(gè)球的表面積為(
A.
B.4π
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線C: (θ為參數(shù)),直線l1:kx﹣y+k=0,l2:cosθ﹣2sinθ=
(Ⅰ)寫(xiě)出曲線C和直線l2的普通方程;
(Ⅱ)l1與C交于不同兩點(diǎn)M,N,MN的中點(diǎn)為P,l1與l2的交點(diǎn)為Q,l1恒過(guò)點(diǎn)A,求|AP||AQ|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是(
A.若命題p:?x0∈R,x02﹣x0+1<0,則¬p:?x?R,x2﹣x+1≥0
B.已知相關(guān)變量(x,y)滿足回歸方程 =2﹣4x,若變量x增加一個(gè)單位,則y平均增加4個(gè)單位
C.命題“若圓C:(x﹣m+1)2+(y﹣m)2=1與兩坐標(biāo)軸都有公共點(diǎn),則實(shí)數(shù)m∈[0,1]為真命題
D.已知隨機(jī)變量X~N(2,σ2),若P(X<a)=0.32,則P(X>4﹣a)=0.68

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】第31屆夏季奧林匹克運(yùn)動(dòng)會(huì)將于2016年8月5日﹣21日在巴西里約熱內(nèi)盧舉行.下表是近五屆奧運(yùn)會(huì)中國(guó)代表團(tuán)和俄羅斯代表團(tuán)獲得的金牌數(shù)的統(tǒng)計(jì)數(shù)據(jù)(單位:枚).

第30屆倫敦

第29屆北京

第28屆雅典

第27屆悉尼

第26屆亞特蘭大

中國(guó)

38

51

32

28

16

俄羅斯

24

23

27

32

26

(Ⅰ)根據(jù)表格中兩組數(shù)據(jù)完成近五屆奧運(yùn)會(huì)兩國(guó)代表團(tuán)獲得的金牌數(shù)的莖葉圖,并通過(guò)莖葉圖比較兩國(guó)代表團(tuán)獲得的金牌數(shù)的平均值及分散程度(不要求計(jì)算出具體數(shù)值,給出結(jié)論即可);
(Ⅱ)甲、乙、丙三人競(jìng)猜今年中國(guó)代表團(tuán)和俄羅斯代表團(tuán)中的哪一個(gè)獲得的金牌數(shù)多(假設(shè)兩國(guó)代表團(tuán)獲得的金牌數(shù)不會(huì)相等),規(guī)定甲、乙、丙必須在兩個(gè)代表團(tuán)中選一個(gè),已知甲、乙猜中國(guó)代表團(tuán)的概率都為 ,丙猜中國(guó)代表團(tuán)的概率為 ,三人各自猜哪個(gè)代表團(tuán)的結(jié)果互不影響.現(xiàn)讓甲、乙、丙各猜一次,設(shè)三人中猜中國(guó)代表團(tuán)的人數(shù)為X,求X的分布列及數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-5:不等式選講]

已知函數(shù)f(x)=|2x﹣a|+a.
(1)當(dāng)a=3時(shí),求不等式f(x)≤6的解集;
(2)設(shè)函數(shù)g(x)=|2x﹣3|,x∈R,f(x)+g(x)≥5,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60°.
(1)求證:平面PBD⊥平面PAC;
(2)求二面角D﹣PB﹣C的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案