【題目】如圖,ABCD是正方形,O是正方形的中心,PO⊥底面ABCDEPC的中點(diǎn).

.求證:(PA∥平面BDE;()平面PAC⊥平面BDE;(III)PB與底面所成的角為600, AB=2a,求三棱錐E-BCD的體積.

【答案】(1)見解析;(2).

【解析】試題分析】(1)先借助題設(shè)證明OEAP,再運(yùn)用線面平行的判定定理推證PA∥平面BDE;(2)先運(yùn)用線面垂直的判定定理證明BD⊥平面PAC,再依據(jù)面面垂直的判定定理證明平面PAC⊥平面BDE;(3題借助題設(shè)中線面角的定義求出三棱錐的高,再運(yùn)用三棱錐的體積公式求解:

證明:(IOAC的中點(diǎn),EPC的中點(diǎn),

OEAP

又∵OE平面BDE,PA平面BDE.

PA∥平面BDE

IIPO⊥底面ABCDPOBD,

又∵ACBD,且AC∩PO=O

BD⊥平面PAC,

而BD平面BDE,

∴平面PAC⊥平面BDE.

(III)∵ PB與底面所成的角為600,且PO⊥底面ABCD,∴∠PBO=600,

∵ AB=2a, ∴BO= a PO= a,

∴E到面BCD的距離= a

∴三棱錐E-BCD的體積V=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是正方體ABCD-A1B1C1D1中BC1上的動(dòng)點(diǎn),下列說法:

①AP⊥B1C;②BP與CD1所成的角是60°;③三棱錐的體積為定值;④B1P∥平面D1AC;⑤二面角P-AB-C的平面角為45°.

其中正確說法的個(gè)數(shù)有 ( )

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)函數(shù),若的極值點(diǎn),求的值并討論的單調(diào)性;

(2)函數(shù)有兩個(gè)不同的極值點(diǎn),其極小值為為,試比較的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】目前,學(xué)案導(dǎo)學(xué)模式已經(jīng)成為教學(xué)中不可或缺的一部分,為了了解學(xué)案的合理使用是否對(duì)學(xué)生的期末復(fù)習(xí)有著重要的影響,我校隨機(jī)抽取100名學(xué)生,對(duì)學(xué)習(xí)成績和學(xué)案使用程度進(jìn)行了調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如表所示:

善于使用學(xué)案

不善于使用學(xué)案

總計(jì)

學(xué)習(xí)成績優(yōu)秀

40

學(xué)習(xí)成績一般

30

總計(jì)

100

參考公式:,其中

參考數(shù)據(jù):

0.050

0.010

0.001

3.841

6.635

10.828

已知隨機(jī)抽查這100名學(xué)生中的一名學(xué)生,抽到善于使用學(xué)案的學(xué)生概率是0.6.

(1)請(qǐng)將上表補(bǔ)充完整(不用寫計(jì)算過程);

(2)試運(yùn)用獨(dú)立性檢驗(yàn)的思想方法分析:有多大的把握認(rèn)為學(xué)生的學(xué)習(xí)成績與對(duì)待學(xué)案的使用態(tài)度有關(guān)?

(3)若從學(xué)習(xí)成績優(yōu)秀的同學(xué)中隨機(jī)抽取10人繼續(xù)調(diào)查,采用何種方法較為合理,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠商調(diào)查甲、乙兩種不同型號(hào)電視機(jī)在10個(gè)賣場的銷售量(單位:臺(tái)),并根據(jù)這10個(gè)賣場的銷售情況,得到如圖所示的莖葉圖.

為了鼓勵(lì)賣場,在同型號(hào)電視機(jī)的銷售中,該廠商將銷售量高于數(shù)據(jù)平均數(shù)的賣場命名為該型號(hào)電視機(jī)的“星級(jí)賣場”.

(1)當(dāng)時(shí),記甲型號(hào)電視機(jī)的“星級(jí)賣場”數(shù)量為,乙型號(hào)電視機(jī)的“星級(jí)賣場”數(shù)量為,比較的大小關(guān)系;

(2)在這10個(gè)賣場中,隨機(jī)選取2個(gè)賣場,記為其中甲型號(hào)電視機(jī)的“星級(jí)賣場”的個(gè)數(shù),求的分布列和數(shù)學(xué)期望;

(3)若,記乙型號(hào)電視機(jī)銷售量的方差為,根據(jù)莖葉圖推斷為何值時(shí),達(dá)到最小值.(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為奇函數(shù),且x=-1處取得極大 2

1)求f(x)的解析式;

2)過點(diǎn)A(1,t) 可作函數(shù)f(x)圖像的三條切線,求實(shí)數(shù)t的取值范圍;

3)若對(duì)于任意的恒成立,求實(shí)數(shù)m取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知、分別是橢圓 的左、右焦點(diǎn),點(diǎn)是橢圓上一點(diǎn),且.

(1)求橢圓的方程;

(2)設(shè)直線與橢圓相交于,兩點(diǎn),若,其中為坐標(biāo)原點(diǎn),判斷到直線的距離是否為定值?若是,求出該定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若函數(shù)上是減函數(shù),求實(shí)數(shù)a的最小值;

(Ⅲ)若,,使成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,橢圓 的離心率為,過橢圓右焦點(diǎn)作兩條互相垂直的弦,當(dāng)其中一條弦所在直線斜率為0時(shí),兩弦長之和為6.

(1)求橢圓的方程;

(2)是拋物線 上兩點(diǎn),且處的切線相互垂直,直線與橢圓相交于兩點(diǎn),求弦的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案