10.集合M={(x,y)|xy>0,x+y<0,x∈R,y∈R}是( 。
A.第一象限的點(diǎn)集B.第二象限的點(diǎn)集C.第三象限的點(diǎn)集D.第四象限的點(diǎn)集

分析 利用不等式的性質(zhì)可得:x+y<0,xy>0,?x<0,y<0.進(jìn)而判斷出集合的意義.

解答 解:由x+y<0,xy>0,?x<0,y<0.
故集合M={(x,y)|xy>0,x+y<0,x∈R,y∈R}是第三象限的點(diǎn)集.
故選:C.

點(diǎn)評 本題主要考查了不等式的性質(zhì)、集合的表示法的應(yīng)用,熟練掌握不等式的性質(zhì)和集合間的關(guān)系是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)a,b,m,n∈R,且a2+b2=3,ma+nb=3,則$\sqrt{{m}^{2}{+n}^{2}}$的最小值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.二次函數(shù)y=ax2+(b-8)x-a-ab,當(dāng)-3<x<2時(shí),y>0,當(dāng)x<-3或x>2時(shí)y<0.
(1)求二次函數(shù)的解析式;
(2)求y=ax2+(b-8)x-a-ab在0≤x≤1時(shí)y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.求直線l:2x-y+3=0,關(guān)于y=-x對稱的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知集合A={x|x2+ax+12=0},B={x|x2+bx+c=0},A∩B={2},A∪B={2,6},求a,b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)集合A={x|x2-2x≤0},B={y|y=x2-2x,x∈A}.則A∪B=[-1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知集合A={x|ax2-3x+2=0},其中a為常數(shù),且a∈R.
(1)若A中至少有一個(gè)元素,求a的取值范圍;
(2)若A中至多有一個(gè)元素,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知變量x,y滿足條件$\left\{\begin{array}{l}{0≤x≤1}\\{0≤y≤2}\\{2y-x≥1}\end{array}\right.$,
(1)求z=2x+y的取值范圍;
(2)求$\sqrt{(x-1)^{2}+{y}^{2}}$的最小值;
(3)求$\frac{y+1}{x+1}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.等差數(shù)列{an}的前n項(xiàng)之和為Sn,a1=1,S10=100,若有數(shù)列{bn},滿足an=log2bn,則b1+b2+b3+b4+b5=( 。
A.682B.782C.786D.802

查看答案和解析>>

同步練習(xí)冊答案