10.已知函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$-$\frac{1}{2}$,$\overrightarrow{m}$=($\sqrt{3}$sinx,cosx),$\overrightarrow{n}$=(cosx,-cosx).
(1)求函數(shù)y=f(x)在x∈[0,$\frac{π}{2}$]時(shí)的值域;
(2)在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,且滿足c=2,a=3,f(B)=0,求邊b的值.

分析 (1)根據(jù)平面向量的數(shù)量積與三角函數(shù)的恒等變換,求出f(x)的解析式,再求f(x)在[0,$\frac{π}{2}$]取值范圍即可;
(2)利用f(B)=0求出B的值,再由余弦定理求出b的值.

解答 解:(1)∵$\overrightarrow{m}$=($\sqrt{3}$sinx,cosx),$\overrightarrow{n}$=(cosx,-cosx),
∴f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$-$\frac{1}{2}$
=$\sqrt{3}$sinxcosx-cos2x-$\frac{1}{2}$
=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x-1
=sin(2x-$\frac{π}{6}$)-1,…4分
∵x∈[0,$\frac{π}{2}$],
∴2x-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],
∴sin(2x-$\frac{π}{6}$)∈[-$\frac{1}{2}$,1],
∴函數(shù)f(x)在[0,$\frac{π}{2}$]的值域?yàn)閇-$\frac{3}{2}$,0];…8分
(2)因?yàn)閒(B)=0,即sin(2B-$\frac{π}{6}$)=1,
∵B∈(0,π),∴2B-$\frac{π}{6}$∈(-$\frac{π}{6}$,$\frac{11π}{6}$),
∴2B-$\frac{π}{6}$=$\frac{π}{2}$,解得B=$\frac{π}{3}$;…10分
又有c=2,a=3,
在△ABC中,由余弦定理得:
b2=c2+a2-2accos$\frac{π}{3}$=4+9-2×2×3×$\frac{1}{2}$=7,
即b=$\sqrt{7}$.…14分.

點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積與三角函數(shù)的恒等變換問(wèn)題,也考查了解三角形的應(yīng)用問(wèn)題,是綜合性題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知等差數(shù)列{an}滿足:a3=3,a5+a7=12,{an}的前n項(xiàng)和為Sn
(1)求an及Sn;     (2)令bn=$\frac{1}{{S}_{n}}$(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)全集U={1,2,3,4,5,6,7,8,9},若∁UA={1,3,5,7,9},則集合A=( 。
A.{2,6,8}B.{2,4,6,8}C.{0,2,4,6,8}D.{0,2,6,8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.我校名教師參加我縣“六城”同創(chuàng)“干部職工進(jìn)網(wǎng)絡(luò),服務(wù)群眾進(jìn)社區(qū)”活動(dòng),他們的年齡均在25歲至50歲之間,按年齡分組:第一組[25,30),第二組[30,35),第三組[35,40),第四組[40,45),第五組[45,50],得到的頻率分布直方圖如圖所示:
區(qū)間[25,30)[30,35)[35,40)[40,45)[45,50]
人數(shù)5ab
如表是年齡的頻數(shù)分布表.
(1)求正整數(shù)a,b,N的值;
(2)根據(jù)頻率分布直方圖估計(jì)我校這N名教師年齡的中位數(shù)和平均數(shù);
(3)從第一、二組用分層抽樣的方法抽取4人,現(xiàn)在從這4人中任取兩人接受咸豐電視臺(tái)的采訪,求從這4人中選取的兩人年齡均在第二組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.函數(shù)f(x)=$\sqrt{x-2}$+$\frac{1}{ln(3-x)}$的定義域?yàn)椋?,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右焦點(diǎn)為F2,左準(zhǔn)線是l,若該雙曲線右支上存在點(diǎn)P,使PF2等于P到直線l的距離,則該雙曲線離心率的取值范圍是(1,$\sqrt{2}+1]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=log2$\frac{1+x}{1-x}$.
(Ⅰ)判斷f(x)奇偶性并證明;
(Ⅱ)用單調(diào)性定義證明函數(shù)g(x)=$\frac{1+x}{1-x}$在函數(shù)f(x)定義域內(nèi)單調(diào)遞增,并判斷f(x)=log2$\frac{1+x}{1-x}$在定義域內(nèi)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知奇函數(shù)$f(x)=\left\{{\begin{array}{l}{-{x^2}+2x}\\ 0\\{{x^2}+2x}\end{array}\begin{array}{l}{({x>0})}\\{({x=0})}\\{({x<0})}\end{array}}\right.$
(1)在直角坐標(biāo)系中畫(huà)出y=f(x)的圖象,并指出函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間[-1,a-2]上單調(diào)遞增,試確定a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.集合A={y|y=x-2},B={y|y=$\sqrt{x}$},則x∈A是x∈B的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.不充分不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案