【題目】函數(shù)是上的奇函數(shù),當(dāng)時(shí),.
(1)求的解析式并畫(huà)出函數(shù)的圖像;
(2)求的根的個(gè)數(shù).
【答案】(1);圖像見(jiàn)詳解;(2)見(jiàn)詳解.
【解析】
(1)由,得,根據(jù)已知解析式,得到,再由函數(shù)是奇函數(shù),即可得出解析式;根據(jù)解析式作出圖像即可;
(2)由(1)的圖像,得到與直線交點(diǎn)個(gè)數(shù)的情況,再由方程的根的個(gè)數(shù),即是與直線的交點(diǎn)個(gè)數(shù),即可得出結(jié)果.
(1)若,則,因?yàn)楫?dāng)時(shí),,
所以,
又函數(shù)是上的奇函數(shù),所以,因此;
易知,
所以;
畫(huà)出其圖像如下:
(2)由(1)中圖像可得:當(dāng)或時(shí),與直線有一個(gè)交點(diǎn);
當(dāng)或時(shí),與直線有兩個(gè)交點(diǎn);
當(dāng)時(shí),與直線有三個(gè)交點(diǎn);
因?yàn)榉匠?/span>的根的個(gè)數(shù),即是與直線的交點(diǎn)個(gè)數(shù),
因此,當(dāng)或時(shí),的根的個(gè)數(shù)為個(gè);
當(dāng)或時(shí),的根的個(gè)數(shù)為個(gè);
當(dāng)時(shí),的根的個(gè)數(shù)為個(gè);
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形為矩形,四邊形為直角梯形,,,,,,.
(1)求證:;
(2)求證:平面;
(3)若二面角的大小為,求直線與平面所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: 的一個(gè)焦點(diǎn)與拋物線y2=-4x的焦點(diǎn)相同,且橢圓C上一點(diǎn)與橢圓C的左,右焦點(diǎn)F1,F2構(gòu)成的三角形的周長(zhǎng)為.
(1)求橢圓C的方程;
(2)若直線l:y=kx+m(k,m∈R)與橢圓C交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),△AOB的重心G滿足: ,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分別是BC,BB1,A1D的中點(diǎn).
(1)證明:MN∥平面C1DE;
(2)求點(diǎn)C到平面C1DE的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)對(duì)顧客實(shí)行購(gòu)物優(yōu)惠活動(dòng)規(guī)定,一次購(gòu)物付款總額:
(1)如果標(biāo)價(jià)總額不超過(guò)200元,則不給予優(yōu)惠;
(2)如果標(biāo)價(jià)總額超過(guò)200元但不超過(guò)500元,則按標(biāo)價(jià)總額給予9折優(yōu)惠;
(3)如果標(biāo)價(jià)總額超過(guò)500元,其500元內(nèi)的按第(2)條給予優(yōu)惠,超過(guò)500元的部分給予8折優(yōu)惠.
某人兩次去購(gòu)物,分別付款180元和423元,假設(shè)他一次性購(gòu)買(mǎi)上述兩次同樣的商品,則應(yīng)付款( )
A.550元B.560元C.570元D.580元
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是定義在上的奇函數(shù),當(dāng)時(shí),,其中.
(1)當(dāng)時(shí),__________;
(2)若的值域是,則的取值范圍為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)?/span>的奇函數(shù)的導(dǎo)函數(shù)為,當(dāng)時(shí),,若,,,則,,的大小關(guān)系正確的是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某區(qū)的區(qū)人大代表有教師6人,分別來(lái)自甲、乙、丙、丁四個(gè)學(xué)校,其中甲校教師記為,乙校教師記為,丙校教師記為,丁校教師記為.現(xiàn)從這6名教師代表中選出3名教師組成十九大報(bào)告宣講團(tuán),要求甲、乙、丙、丁四個(gè)學(xué)校中,每校至多選出1名.
(1)請(qǐng)列出十九大報(bào)告宣講團(tuán)組成人員的全部可能結(jié)果;
(2)求教師被選中的概率;
(3)求宣講團(tuán)中沒(méi)有乙校教師代表的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)部分圖象如圖所示.
(1)求函數(shù)的解析式及的單調(diào)遞增區(qū)間;
(2)把函數(shù)圖象上點(diǎn)的橫坐標(biāo)擴(kuò)大到原來(lái)的2倍(縱坐標(biāo)不變),再向左平移個(gè)單位,得到函數(shù)的圖象,求關(guān)于x的方程在上所有的實(shí)數(shù)根之和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com