16.圓O方程為(x+1)2+y2=8,
(1)判斷P(-1,2)與圓O的位置關(guān)系.
(2)若弦長(zhǎng)|AB|=2$\sqrt{7}$,求直線AB的斜率k.

分析 (1)P代入圓的方程,即可得出結(jié)論;
(2)由弦長(zhǎng)公式求出圓心到直線AB的距離,點(diǎn)斜式設(shè)出直線方程,由點(diǎn)到直線的距離公式求出斜率.

解答 解:(1)∵(-1+1)2+22=4<8,
∴P(-1,2)在圓O內(nèi);
(2)設(shè)圓心(-1,0)到直線AB的距離為d,
則d=$\sqrt{8-7}$=1,設(shè)直線AB的傾斜角α,斜率為k,
則直線AB的方程 y-2=k(x+1),
即kx-y+k+2=0,d=1=$\frac{|-k+k+2|}{\sqrt{{k}^{2}+1}}$,
∴k=$\sqrt{3}$或-$\sqrt{3}$.

點(diǎn)評(píng) 本題考查弦長(zhǎng)公式、點(diǎn)到直線的距離公式的應(yīng)用,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知復(fù)數(shù)z滿足z(3+4i)=5-5i,則復(fù)數(shù)z在復(fù)平面對(duì)應(yīng)的點(diǎn)所在的象限為(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.方程x2-xy+2y+1=0表示的曲線經(jīng)過(guò)4個(gè)A(1,-2),B(2,-3),C(3,10),D(0,-$\frac{1}{2}}$)中的(  )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖,已知△ABC中,AB=AC=4,∠BAC=$\frac{π}{2}$,點(diǎn)D是BC的中點(diǎn),若向量$\overrightarrow{AM}$=$\frac{1}{4}$$\overrightarrow{AB}$+m$\overrightarrow{AC}$,且點(diǎn)M在△ACD的內(nèi)部(不含邊界),則$\overrightarrow{AM}•\overrightarrow{BM}$的取值范圍是( 。
A.(-2,4)B.(-2,6)C.(0,4)D.(0,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知四邊形MNPQ的頂點(diǎn)M(1,1),N(3,-1),P(4,0),Q(2,2),
(1)求斜率kMN與斜率kPQ
(2)求證:四邊形MNPQ為矩形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.對(duì)于任意的實(shí)數(shù)a,b,c,下列命題正確的是(  )
A.若a>b,c=0,則ac>bcB.若ac2>bc2,則a>b
C.若a>b,則$\frac{1}{a}$>$\frac{1}$D.若a>b,則ac2>bc2
E.若a>b,則ac2>bc2   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知正實(shí)數(shù)x,y滿足$\frac{1}{x}$+$\frac{2}{y}$=1,那么2x+3y的最小值為8+4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知函數(shù)f(x)滿足f(x)=f(x+1)-f(x-1)(x∈R),且f(2)=1,則f(2012)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.設(shè)曲線y=2015xn+1(n∈N*)在點(diǎn)(1,2015)處的切線與x軸的交點(diǎn)的橫坐標(biāo)為xn,令an=log2015xn,則a1+a2+…a2014的值為-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案