13.設(shè)等差數(shù)列{an}的前n項和為Sn,若a3=1,則S5=( 。
A.4B.5C.6D.7

分析 由等差數(shù)列的通項公式性質(zhì)可得:a1+a5=2a3,再利用求和公式即可得出.

解答 解:由等差數(shù)列的通項公式性質(zhì)可得:a1+a5=2a3
∴S5=$\frac{5({a}_{1}+{a}_{5})}{2}$=5a3=5.
故選:B.

點評 本題考查了等差數(shù)列的通項公式性質(zhì)、求和公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=4x-m•2x+1+m2-3,且存在實數(shù)x,使f(-x)=-f(x),則實數(shù)m的取值范圍是$[1-\sqrt{3},2\sqrt{2}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若函數(shù)f(x)滿足:在定義域D內(nèi)存在實數(shù)x0,使得f(x0+1)=f(x0)+f(1)成立,
則稱函數(shù)f(x)為“1的飽和函數(shù)”.給出下列五個函數(shù):
①f(x)=2x;②f(x)=$\frac{1}{x}$;③$f(x)=lg({x^2}-\frac{1}{2})$;④$f(x)=\frac{2x-1}{e^x}$.
其中是“1的飽和函數(shù)”的所有函數(shù)的序號為(  )
A.①②④B.②③④C.①②③D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=aex(x+1)(其中e=2.71828…),g(x)=x2+bx+2,且f(x)與g(x)在x=0處有相同的切線.
(1)求函數(shù)f(x)的解析式,并討論f(x)在[t,t+1](t∈R)上的最小值;
(2)若對任意的x≥-2,kf(x)≥g(x)恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知各項均為正數(shù)的等比數(shù)列{an}中,a2a9=10,則數(shù)列{lgcn}的前10項和為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在數(shù)列{an}中,a1=2,an+1=$2(1+\frac{1}{n}){a_n}$,n∈N*.
(1)求證:$\{\frac{a_n}{n}\}$是等比數(shù)列;
(2)求數(shù)列{an}的前n項之和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.a(chǎn),b中至少有一個不為零的充要條件是( 。
A.ab=0B.ab>0C.a2+b2=0D.a2+b2>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知全集U=R,集合A={x|y=lg(x2-4x)},B={x|x<2},則(∁UA)∩B=( 。
A.{x|x≥0}B.{x|0≤x<2}C.{x|2<x≤4}D.{x|0≤x≤4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.曲線y=xlnx上點P處的切線平行于直線2x-y+1=0,則點P的坐標(biāo)是( 。
A.(1,e)B.(e,e)C.(e,1)D.(1,1)

查看答案和解析>>

同步練習(xí)冊答案