【題目】如圖,圓臺(tái)的軸截面為等腰梯形,,,圓臺(tái)的側(cè)面積為.若點(diǎn)C,D分別為圓上的動(dòng)點(diǎn)且點(diǎn)C,D在平面的同側(cè).

1)求證:;

2)若,則當(dāng)三棱錐的體積取最大值時(shí),求多面體的體積.

【答案】1)證明見(jiàn)解析(2

【解析】

1)由圓臺(tái)側(cè)面積求出上下底半徑,計(jì)算圓臺(tái)的高,計(jì)算,由直角三角形性質(zhì)得;

2)三棱錐的高就是,表示出三棱錐的體積,求出最大值時(shí),多面體分為三棱錐和四棱錐,分別計(jì)算體積后相加即得.

解:(1)設(shè),的半徑分別為,,

因?yàn)閳A臺(tái)的側(cè)面積為,

所以,可得.

因此,在等腰梯形中,,,.

如圖,連接線段,,

在圓臺(tái)中,平面,平面,

所以.

,所以在中,.

中,,故,即.

2)由題意可知,三棱錐的體積為,

又在直角三角形中,,

所以當(dāng)且僅當(dāng),

即點(diǎn)D為弧的中點(diǎn)時(shí),有最大值.

過(guò)點(diǎn)C于點(diǎn)M,

因?yàn)?/span>平面,平面,

所以,平面,平面,,

所以平面.

,則點(diǎn)C到平面的距離,

所以四棱錐的體積.

綜上,當(dāng)三棱錐體積最大值時(shí),

多面體

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱錐的底面為菱形,,,的中點(diǎn),上一點(diǎn),且,若,.

1)求證:平面

2)求證:平面;

3)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱柱中,平面,底面是矩形,,,為棱的中點(diǎn).

1)求直線與平面所成角的正弦值;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是國(guó)家統(tǒng)計(jì)局于202019日發(fā)布的201812月到201912月全國(guó)居民消費(fèi)價(jià)格的漲跌幅情況折線圖.(注:同比是指本期與同期作對(duì)比;環(huán)比是指本期與上期作對(duì)比.如:20192月與20182月相比較稱同比,20192月與20191月相比較稱環(huán)比)根據(jù)該折線圖,下列結(jié)論錯(cuò)誤的是(

A.201912月份,全國(guó)居民消費(fèi)價(jià)格環(huán)比持平

B.201812月至201912月全國(guó)居民消費(fèi)價(jià)格環(huán)比均上漲

C.201812月至201912月全國(guó)居民消費(fèi)價(jià)格同比均上漲

D.201811月的全國(guó)居民消費(fèi)價(jià)格高于201712月的全國(guó)居民消費(fèi)價(jià)格

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】培養(yǎng)某種水生植物需要定期向培養(yǎng)植物的水中加入物質(zhì),已知向水中每投放1個(gè)單位的物質(zhì),(單位:天)時(shí)刻后水中含有物質(zhì)的量增加,的函數(shù)關(guān)系可近似地表示為關(guān)系可近似地表示為.根據(jù)經(jīng)驗(yàn),當(dāng)水中含有物質(zhì)的量不低時(shí),物質(zhì)才能有效發(fā)揮作用.

1)若在水中首次投放1個(gè)單位的物質(zhì),計(jì)算物質(zhì)能持續(xù)有效發(fā)揮作用幾天?

2)若在水中首次投放1個(gè)單位的物質(zhì),第8天再投放1個(gè)單位的物質(zhì),試判斷第8天至第12天,水中所含物質(zhì)的量是否始終不超過(guò),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校開(kāi)設(shè)了射擊選修課,規(guī)定向、兩個(gè)靶進(jìn)行射擊:先向靶射擊一次,命中得1分,沒(méi)有命中得0分,向靶連續(xù)射擊兩次,每命中一次得2分,沒(méi)命中得0分;小明同學(xué)經(jīng)訓(xùn)練可知:向靶射擊,命中的概率為,向靶射擊,命中的概率為,假設(shè)小明同學(xué)每次射擊的結(jié)果相互獨(dú)立.現(xiàn)對(duì)小明同學(xué)進(jìn)行以上三次射擊的考核.

1)求小明同學(xué)恰好命中一次的概率;

2)求小明同學(xué)獲得總分的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為t為參數(shù)),以原點(diǎn)O為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;

2)設(shè)P0,-1),直線lC的交點(diǎn)為M,N,線段MN的中點(diǎn)為Q,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正項(xiàng)數(shù)列中,,點(diǎn)在拋物線.數(shù)列中,點(diǎn)在經(jīng)過(guò)點(diǎn),以為方向向量的直線.

1)求數(shù)列,的通項(xiàng)公式;

2)若,問(wèn)是否存在,使得成立?若存在,求出的值;若不存在,說(shuō)明理由;

3)對(duì)任意的正整數(shù),不等式成立,求正數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】新型冠狀病毒最近在全國(guó)蔓延,具有很強(qiáng)的人與人之間的傳染性,該病毒在進(jìn)入人體后一般有14天的潛伏期,在這14天的潛伏期內(nèi)患者無(wú)任何癥狀,為病毒傳播的最佳時(shí)間.假設(shè)每位病毒攜帶者在潛伏期內(nèi)每天有位密切接觸者,接觸病毒攜帶者后被感染的概率為,每位密切接觸者不用再接觸其他病毒攜帶者.

1)求一位病毒攜帶者一天內(nèi)感染的人數(shù)的均值;

2)若,時(shí),從被感染的第一天算起,試計(jì)算某一位病毒攜帶者在14天潛伏期內(nèi),被他平均累計(jì)感染的人數(shù)(用數(shù)字作答);

331620時(shí)18分,由我國(guó)軍事科學(xué)院軍事科學(xué)研究院陳薇院士領(lǐng)銜的科學(xué)團(tuán)隊(duì),研制重組新型冠狀病毒疫苗獲批進(jìn)入臨床狀態(tài),新疫苗的使用,可以極大減少感染新型冠狀病毒的人數(shù),為保證安全性和有效性,某科研團(tuán)隊(duì)抽取500支新冠疫苗,觀測(cè)其中某項(xiàng)質(zhì)量指標(biāo)值,得到如下頻率分布直方圖:

①求這500支該項(xiàng)質(zhì)量指標(biāo)值的樣本平均值(同一組的數(shù)據(jù)用該組區(qū)代表間的中點(diǎn)值)

②由直方圖可以認(rèn)為,新冠疫苗的該項(xiàng)質(zhì)量指標(biāo)值服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差,經(jīng)計(jì)算可得這500支新冠疫苗該項(xiàng)指標(biāo)值的樣本方差.現(xiàn)有5名志愿者參與臨床試驗(yàn),觀測(cè)得出該項(xiàng)指標(biāo)值分別為:206178,195160,229,試問(wèn)新冠疫苗的該項(xiàng)指標(biāo)值是否正常,為什么?

參考數(shù)據(jù):,若,則

查看答案和解析>>

同步練習(xí)冊(cè)答案