14.解關(guān)于x的不等式:
(1)x2+3x-10≥0;                
(2)x2-3x-2≤0.

分析 根據(jù)一元二次不等式的解法與步驟,進(jìn)行解答即可.

解答 解:(1)不等式x2+3x-10≥0化為(x+5)(x-2)≥0;
解得x≤-5或x≥2,
∴不等式的解集為{x|x≤-5或x≥2};                
(2)不等式x2-3x-2≤0中,
△=(-3)2-4×1×(-2)=17>0,
又方程x2-3x-2=0的兩個(gè)實(shí)數(shù)根為$\frac{3-\sqrt{17}}{2}$和$\frac{3+\sqrt{17}}{2}$,
所以該不等式的解集為{x|$\frac{3-\sqrt{17}}{2}$≤x≤$\frac{3+\sqrt{17}}{2}$}.

點(diǎn)評(píng) 本題考查了一元二次不等式的解法與應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=-x3+x2+a,g(x)=m lnx.
(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)在x∈[-$\frac{1}{2}$,1]上的最大值為$\frac{3}{8}$,求實(shí)數(shù)a的值;
(3)若對(duì)任意x∈[1,e],g(x)≥$\frac{f'(x)}{3}$+(m+$\frac{4}{3}$)x恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知{an}為等差數(shù)列,Sn為其前n項(xiàng)和.若a1+a9=18,a4=7,則S8=64.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)a<0,則a的平方根是$±\sqrt{-a}i$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{{x}^{2}}{2}$-klnx,k>0,求f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)函數(shù)f(x)定義在[a,b]上,則“f(a)f(b)<0”是“f(x)在(a,b)上存在零點(diǎn)”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,若a=1,sinA=$\frac{1}{3}$,則$\frac{a+b+c}{sinA+sinB+sinC}$=
3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)f(x)=$\frac{\sqrt{x+2}}{2x-1}$的定義域?yàn)閧x|x≥-2且x≠$\frac{1}{2}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若不等式x2-2ax+a>0,對(duì)x∈R恒成立,則關(guān)于t的不等式a2t+1<a${\;}^{{t^2}+2t-3}}$<1的解為(1,2).

查看答案和解析>>

同步練習(xí)冊(cè)答案