5.給出如下列聯(lián)表
患心臟病患其它病合  計(jì)
高血壓201030
不高血壓305080
合  計(jì)5060110
由以上數(shù)據(jù)判斷高血壓與患心臟病之間在多大程度上有關(guān)系?( 。
(參考數(shù)據(jù):P(K2≥6.635)=0.010,P(K2≥7.879)=0.005)
A.0.5%B.1%C.99.5%D.99%

分析 根據(jù)表格數(shù)據(jù)和獨(dú)立性試驗(yàn)的公式${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$計(jì)算k2的值,從而查表即可判斷.

解答 解:由${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$代入得,
k2=$\frac{110(1000-300)^{2}}{(20+10)(30+50)(20+30)(10+50)}$≈7.486>6.635
查表得P(K2≥6.635)=0.01;
故有99%的把握認(rèn)為高血壓與患心臟病之間有關(guān).
故選D.

點(diǎn)評(píng) 本題考查了獨(dú)立性檢驗(yàn)的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知函數(shù)$f(x)=ln({x-2})-\frac{x^2}{2a}$(a為整數(shù)且a≠0).若f(x)在x0處取得極值,且${x_0}∉[{e+2,{e^2}+2}]$,而f(x)≥0在[e+2,e2+2]上恒成立,則a的取值范圍是a>e4+2e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.能夠把圓O:x2+y2=9的周長(zhǎng)和面積同時(shí)分為相等的兩部分的函數(shù)f(x)稱(chēng)為“親和函數(shù)”,則下列函數(shù):$f(x)={x^3}+x,f(x)=ln\frac{5+x}{5-x},f(x)=tan\frac{x}{5},f(x)={e^x}+{e^{-x}}$,其中是圓O:x2+y2=9的“親和函數(shù)”的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.復(fù)數(shù)$\frac{i}{1-i}$(i是虛數(shù)單位)的實(shí)部是( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.?dāng)?shù)列{an}是項(xiàng)數(shù)為偶數(shù)的等差數(shù)列,它的奇數(shù)項(xiàng)的和是24,偶數(shù)項(xiàng)的和為30,若它的末項(xiàng)比首項(xiàng)大$\frac{21}{2}$,則該數(shù)列的項(xiàng)數(shù)是( 。
A.6B.8C.12D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知$\frac{cosα+sinα}{cosα-sinα}=\frac{3}{5}$,則cos2α-sin2α=$\frac{15}{17}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.直線x=1,y=x將圓x2+y2=4分成四塊,用5種不同的顏料涂色,要求共邊的兩塊顏色互異,每塊只涂一色,則不同的涂色方案共有260.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.由代數(shù)式的乘法法則類(lèi)比推導(dǎo)向量的數(shù)量積的運(yùn)算法則:
①“mn=nm”類(lèi)比得到“$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow$•$\overrightarrow{a}$”;
②“(m•n)t=m(n•t)”類(lèi)比得到“($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow$•$\overrightarrow{c}$)”;
③“(m+n)t=mt+nt”類(lèi)比得到“($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$•$\overrightarrow{c}$+$\overrightarrow$•$\overrightarrow{c}$”;
④“t≠0,mt=xt⇒m=x”類(lèi)比得到“$\overrightarrow{p}$≠0,$\overrightarrow{a}$•$\overrightarrow{p}$=$\overrightarrow{x}$•$\overrightarrow{p}$⇒$\overrightarrow{a}$=$\overrightarrow{x}$”;
⑤“|m•n|=|m|•|n|”類(lèi)比得到“|$\overrightarrow{a}$•$\overrightarrow$|=|$\overrightarrow{a}$|•|$\overrightarrow$|”;
⑥“$\frac{ac}{bc}$=$\frac{a}$”類(lèi)比得到“$\frac{\overrightarrow{a}•\overrightarrow{c}}{\overrightarrow•\overrightarrow{c}}$=$\frac{\overrightarrow{a}}{\overrightarrow}$”.
以上式子中,類(lèi)比得到的結(jié)論正確的命題序號(hào)為①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.函數(shù)f(x)=$\frac{1}{{x}^{2}}$+alnx(其中a為常數(shù)),在[1,2]上的最小值為$\frac{1}{4}$+aln2或$\frac{a}{2}$+aln$\sqrt{\frac{2}{a}}$或1.

查看答案和解析>>

同步練習(xí)冊(cè)答案