【題目】已知數(shù)列的前項(xiàng)和為,滿(mǎn)足.
(1)求證:數(shù)列等差數(shù)列;
(2)當(dāng)時(shí),記,是否存在正整數(shù)、,使得、、成等比數(shù)列?若存在,求出所有滿(mǎn)足條件的數(shù)對(duì);若不存在,請(qǐng)說(shuō)明理由;
(3)若數(shù)列、、、、、是公比為的等比數(shù)列,求最小正整數(shù),使得當(dāng)時(shí),.
【答案】(1)證明見(jiàn)解析;(2)存在,有且只有一個(gè)為;(3).
【解析】
(1)由得出,兩式相減,推導(dǎo)出,利用等差中項(xiàng)法可證得數(shù)列是等差數(shù)列;
(2)由,得出,求出、,可求出等差數(shù)列的通項(xiàng)公式,進(jìn)而可得出,假設(shè)存在正整數(shù)、,使得,化簡(jiǎn)得出,變形得出,對(duì)的取值進(jìn)行分類(lèi)討論,結(jié)合數(shù)列的單調(diào)性的、的值;
(3)求出、,可求出等差數(shù)列的通項(xiàng)公式,由題意得出的表達(dá)式,進(jìn)而可得出,設(shè),計(jì)算得出,,,,,,設(shè),利用定義證明數(shù)列的單調(diào)性,由此可證得當(dāng)時(shí),,進(jìn)而可證得結(jié)論成立.
(1)由題意得,兩式相減得,
則有,
所以.
因?yàn)?/span>,所以,故數(shù)列為等差數(shù)列;
(2)因?yàn)?/span>,,
所以,解得;,即,解得.
所以數(shù)列的公差為,所以,故.
假設(shè)存在正整數(shù)、,使得,,成等比數(shù)列,則,
于是(*),所以.
當(dāng)時(shí),,則,所以是方程(*)的一組解;
當(dāng)且時(shí),因?yàn)?/span>,
所以,數(shù)列在上單調(diào)遞減,
所以,此時(shí)方程(*)無(wú)正整數(shù)解.
綜上,滿(mǎn)足題設(shè)的數(shù)對(duì)有且只有一個(gè),為;
(3)由題意得,解得,
故數(shù)列的公差,所以,
故,所以.
又因?yàn)?/span>,所以,即.
記,
則,,,,,,
猜想:當(dāng)時(shí),.
驗(yàn)證如下:記,
則
,
所以數(shù)列單調(diào)遞增,故,
所以,故最小正整數(shù)的值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體ABCDE中,DE∥AB,AC⊥BC,BC=2AC=2,AB=2DE,且D點(diǎn)在平面ABC內(nèi)的正投影為AC的中點(diǎn)H且DH=1.
(1)證明:面BCE⊥面ABC
(2)求BD與面CDE夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(2)討論函數(shù)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系內(nèi),點(diǎn) 在曲線(xiàn):,(為參數(shù),)上運(yùn)動(dòng),以為極軸建立極坐標(biāo)系.直線(xiàn)的極坐標(biāo)方程為.
(Ⅰ)寫(xiě)出曲線(xiàn)的標(biāo)準(zhǔn)方程和直線(xiàn)的直角坐標(biāo)方程;
(Ⅱ)若直線(xiàn)與曲線(xiàn)相交于兩點(diǎn),點(diǎn)在曲線(xiàn)上移動(dòng),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是邊長(zhǎng)為2的正方形,,為中點(diǎn),點(diǎn)在上且平面,在延長(zhǎng)線(xiàn)上,,交于,且
(1)證明:平面;
(2)設(shè)點(diǎn)在線(xiàn)段上,若二面角為,求的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn):(為參數(shù)),曲線(xiàn):(為參數(shù)).
(1)設(shè)與相交于兩點(diǎn),求;
(2)若把曲線(xiàn)上各點(diǎn)的橫坐標(biāo)壓縮為原來(lái)的倍,縱坐標(biāo)壓縮為原來(lái)的倍,得到曲線(xiàn),設(shè)點(diǎn)P是曲線(xiàn)上的一個(gè)動(dòng)點(diǎn),求它到直線(xiàn)的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,,分別是橢圓的左、右焦點(diǎn),直線(xiàn)與橢圓交于不同的兩點(diǎn)、,且.
(1)求橢圓的方程;
(2)已知直線(xiàn)經(jīng)過(guò)橢圓的右焦點(diǎn),是橢圓上兩點(diǎn),四邊形是菱形,求直線(xiàn)的方程;
(3)已知直線(xiàn)不經(jīng)過(guò)橢圓的右焦點(diǎn),直線(xiàn),,的斜率依次成等差數(shù)列,求直線(xiàn)在軸上截距的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com