【題目】已知在平面直角坐標(biāo)系內(nèi),點(diǎn) 在曲線:,(為參數(shù),)上運(yùn)動(dòng),以為極軸建立極坐標(biāo)系.直線的極坐標(biāo)方程為.
(Ⅰ)寫(xiě)出曲線的標(biāo)準(zhǔn)方程和直線的直角坐標(biāo)方程;
(Ⅱ)若直線與曲線相交于兩點(diǎn),點(diǎn)在曲線上移動(dòng),求面積的最大值.
【答案】(Ⅰ)曲線的標(biāo)準(zhǔn)方程:;直線的直角坐標(biāo)方程為:
(Ⅱ)
【解析】
試題分析:(Ⅰ)對(duì)于曲線,理平方關(guān)系消去參數(shù)即可;對(duì)于極坐標(biāo)方程利用三角函數(shù)的和角公式后再化成直角坐標(biāo)方程,再利用消去參數(shù)得到直線的直角坐標(biāo)方程.
(Ⅱ)欲求面積的最大值,由于一定,故只要求邊上的高最大即可,根據(jù)平面幾何的特征,當(dāng)點(diǎn)在過(guò)圓心且垂直于的直線上時(shí),距離最遠(yuǎn),據(jù)此求面積的最大值即可.
試題解析:(Ⅰ)消參數(shù)得曲線的標(biāo)準(zhǔn)方程:.由題得:,即直線的直角坐標(biāo)方程為:.
(Ⅱ)圓心到的距離為,則點(diǎn)到的最大距離為,,∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的頂點(diǎn)A(5,1),AB邊上的中線CM所在直線方程為2x﹣y﹣5=0,∠B的平分線BN所在直線方程為x﹣2y﹣5=0.求:
(1)頂點(diǎn)B的坐標(biāo);
(2)直線BC的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列的前項(xiàng)和為,公差,且, 成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司有4家直營(yíng)店, , , ,現(xiàn)需將6箱貨物運(yùn)送至直營(yíng)店進(jìn)行銷(xiāo)售,各直營(yíng)店出售該貨物以往所得利潤(rùn)統(tǒng)計(jì)如下表所示.根據(jù)此表,該公司獲得最大總利潤(rùn)的運(yùn)送方式有
A. 種 B. 種 C. 種 D. 種
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),且.
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)有最值,寫(xiě)出的取值范圍.(只需寫(xiě)出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的各項(xiàng)均為正數(shù),前項(xiàng)和為,且.
(1)求證:數(shù)列是等差數(shù)列;
(2)若數(shù)列滿足,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解心肺疾病是否與年齡相關(guān),現(xiàn)隨機(jī)抽取80名市民,得到數(shù)據(jù)如下表:
患心肺疾病 | 不患心肺疾病 | 合計(jì) | |
大于40歲 | 16 | ||
小于或等于40歲 | 12 | ||
合計(jì) | 80 |
已知在全部的80人中隨機(jī)抽取1人,抽到不患心肺疾病的概率為
下面的臨界值表供參考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:K2= ,其中n=a+b+c+d)
(1)請(qǐng)將2×2列聯(lián)表補(bǔ)充完整;
(2)能否在犯錯(cuò)誤的概率不超過(guò)0.025的前提下認(rèn)為患心肺疾病與年齡有關(guān)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若數(shù)列: , ,…, ()中()且對(duì)任意的
恒成立,則稱數(shù)列為“數(shù)列”.
(Ⅰ)若數(shù)列, , , 為“數(shù)列”,寫(xiě)出所有可能的, ;
(Ⅱ)若“數(shù)列”: , ,…, 中, , ,求的最大值;
(Ⅲ)設(shè)為給定的偶數(shù),對(duì)所有可能的“數(shù)列”: , ,…, ,
記,其中表示, ,…, 這個(gè)數(shù)中最大的數(shù),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知Rt△ABC,∠ABC=90°,D是AC的中點(diǎn),⊙O經(jīng)過(guò)A,B,D三點(diǎn),CB的延長(zhǎng)線交⊙O于點(diǎn)E,過(guò)點(diǎn)E作⊙O的切線,交AC的延長(zhǎng)線于點(diǎn)F.在滿足上述條件的情況下,當(dāng)∠CAB的大小變化時(shí),圖形也隨著改變,但在這個(gè)變化過(guò)程中,有些線段總保持著相等的關(guān)系.
(1)連接圖中已標(biāo)明字母的某兩點(diǎn),得到一條新線段與線段CE相等,并說(shuō)明理由;
(2)若CF=CD,求sin F的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com