【題目】已知直線過橢圓的右焦點且與橢圓交于兩點, 為中點, 的斜率為.
(1)求橢圓的方程;
(2)設(shè)是橢圓的動弦,且其斜率為1,問橢圓上是否存在定點,使得直線的斜率滿足?若存在,求出點的坐標(biāo);若不存在,請說明理由.
【答案】(1).(2)或滿足題意.
【解析】試題分析:(1)由已知得,橢圓的半焦距,
設(shè), , ,由在橢圓上列出方程組,得到,
進(jìn)而求得,再根據(jù),解得的值,即可得到橢圓的方程;
(2)假設(shè)上存在定點滿足題意,設(shè)直線方程為,聯(lián)立方程組,得, ,由,代入化簡得,又由它與無關(guān),即可得橢圓上存在點或滿足題意.
試題解析:
(1)由已知得,橢圓的半焦距,
設(shè), , ,則, ,又由在橢圓上得
,兩式相減得,所以
,
而,所以
又,所以, ,
所以橢圓的方程為.
(2)假設(shè)上存在定點滿足題意,并設(shè)直線方程為,
, ,聯(lián)立,消得,則
, ,
由,得,將, ,代入并化簡得
,
將, 代入并化簡得,
由它與無關(guān),只需,解得,或,
而這兩點恰好在橢圓上,從而假設(shè)成立,
即在橢圓上存在點或滿足題意.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在棱長為1的正方體中,點, 分別是側(cè)面與底面的中心,則下列命題中錯誤的個數(shù)為( )
①平面; ②異面直線與所成角為;
③與平面垂直; ④.
A. 0 B. 1 C. 2 D. 3
【答案】A
【解析】對于①,∵DF,DF平面, 平面,∴平面,正確;
對于②,∵DF,∴異面直線與所成角即異面直線與所成角,△為等邊三角形,故異面直線與所成角為,正確;
對于③,∵⊥, ⊥CD,且CD=D,∴⊥平面,即⊥平面正確;
對于④,,正確,
故選:A
【題型】單選題
【結(jié)束】
8
【題目】已知函數(shù)在區(qū)間上單調(diào)遞增,則實數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓C與y軸相切于點T(0,2),與x軸的正半軸交于兩點 (點在點的左側(cè)),且.
(1)求圓C的方程;(2)過點任作一直線與圓O: 相交于兩點,連接,求證: 定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)的定義域為[﹣1,1],圖象如圖1所示;函數(shù)g(x)的定義域為[﹣2,2],圖象如圖2所示,設(shè)函數(shù)f(g(x))有m個零點,函數(shù)g(f(x))有n個零點,則m+n等于( )
A. 6 B. 10 C. 8 D. 1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某地區(qū)某種農(nóng)產(chǎn)品的年產(chǎn)量(單位:噸)對價格(單位:千元/噸)和利潤的影響,對近五年該農(nóng)產(chǎn)品的年產(chǎn)量和價格統(tǒng)計如下表:
1 | 2 | 3 | 4 | 5 | |
7.0 | 6.5 | 5.5 | 3.8 | 2.2 |
已知和具有線性相關(guān)關(guān)系.
(Ⅰ)求關(guān)于的線性回歸方程;
(Ⅱ)若每噸該農(nóng)產(chǎn)品的成本為2千元,假設(shè)該農(nóng)產(chǎn)品可全部賣出,預(yù)測當(dāng)年產(chǎn)量為多少噸時,年利潤取到最大值?(保留一位小數(shù))
參考數(shù)據(jù)及公式: , ,
, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】北京大學(xué)從參加逐夢計劃自主招生考試的學(xué)生中隨機抽取60名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六組, ,…, 后得到如下部分頻率分布直方圖,觀察圖形的信息,回答下列問題:
(1)求分?jǐn)?shù)在內(nèi)的頻率;
(2)估計本次考試成績的中位數(shù)(結(jié)果四舍五入,保留整數(shù));
(3)用分層抽樣的方法在分?jǐn)?shù)段為的學(xué)生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2人,求至多有人在分?jǐn)?shù)段內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在幾何體中,四邊形為菱形,對角線與的交點為,四邊形為梯形, .
(Ⅰ)若,求證: 平面;
(Ⅱ)求證:平面平面;
(Ⅲ)若, , ,求與平面所成角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中, 的兩個頂點的坐標(biāo)分別為,三個內(nèi)角滿足.
(1)若頂點的軌跡為,求曲線的方程;
(2)若點為曲線上的一點,過點作曲線的切線交圓于不同的兩點(其中在的右側(cè)),求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓與直線相切.
(1)求圓的方程;
(2)求直線截圓所得弦的長;
(3)過點作兩條直線與圓相切,切點分別為,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com