【題目】在棱長為1的正方體中,點, 分別是側(cè)面與底面的中心,則下列命題中錯誤的個數(shù)為( )

平面; ②異面直線所成角為;

與平面垂直; ④

A. 0 B. 1 C. 2 D. 3

【答案】A

【解析】對于①,∵DFDF平面, 平面,平面,正確;

對于②,∵DF,異面直線所成角即異面直線所成角,為等邊三角形,故異面直線所成角為,正確;

對于③,∵, ⊥CD,且CD=D,平面,即平面正確;

對于④,,正確,

故選:A

型】單選題
結(jié)束】
8

【題目】已知函數(shù)在區(qū)間上單調(diào)遞增,則實數(shù)的取值范圍是( )

A. B. C. D.

【答案】C

【解析】依題意, ,令,則當時, ,當時,可知上分別單調(diào)遞增,故只需即可,故,解得,故;綜上所述,實數(shù)b的取值范圍為,故選C.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的一個焦點與上、下頂點構(gòu)成直角三角形,以橢圓的長軸長為直徑的圓與直線相切.

(1)求橢圓的標準方程;

(2)設過橢圓右焦點且不平行于軸的動直線與橢圓相交于兩點,探究在軸上是否存在定點,使得為定值?若存在,試求出定值和點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,EBC的中點,F在棱AC上,且AF=3FC

(1)求三棱錐D-ABC的體積

(2)求證:平面DAC⊥平面DEF;

(3)若MDB中點,N在棱AC上,且CN=CA,求證:MN∥平面DEF

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知坐標平面上點與兩個定點, 的距離之比等于5.

(1)求點的軌跡方程,并說明軌跡是什么圖形;

(2)記(1)中的軌跡為,過點的直線所截得的線段的長為8,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直三棱柱 中, , , 是棱上的動點.

證明: ;

若平面分該棱柱為體積相等的兩個部分,試確定點的位置,并求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=

(1)若對,f(x) 恒成立,求的取值范圍;

(2)已知常數(shù)aR解關(guān)于x的不等式f(x) .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖 1,在直角梯形中, ,且.現(xiàn)以為一邊向形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直, 的中點,如圖 2.

(1)求證: 平面

(2)求證: 平面;

(3)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐A-BCDE中,底面BCDE為直角梯形,CD⊥平面ABC,側(cè)面ABC是等腰直角三角形,∠EBC=ABC=90°BC=CD=2BE=2,點M是棱AD的中點

(I)證明:平面AED⊥平面ACD;

()求銳二面角B-CM-A的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線過橢圓的右焦點且與橢圓交于兩點, 中點, 的斜率為.

(1)求橢圓的方程;

(2)設是橢圓的動弦,且其斜率為1,問橢圓上是否存在定點,使得直線的斜率滿足?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案