【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)是否存在實(shí)數(shù),使得函數(shù)的極值大于?若存在,求的取值范圍;若不存在,說明理由.
【答案】(1)當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間
為;當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間. (2)存在,范圍為
【解析】
試題(1)函數(shù)的定義域?yàn)?/span>,.
① 當(dāng)時(shí),,∵∴,∴ 函數(shù)單調(diào)遞增區(qū)間為
② 當(dāng)時(shí),令得,即,.
(ⅰ)當(dāng),即時(shí),得,故,
∴ 函數(shù)的單調(diào)遞增區(qū)間為.
(ⅱ)當(dāng),即時(shí),方程的兩個(gè)實(shí)根分別為,.
若,則,此時(shí),當(dāng)時(shí),.
∴函數(shù)的單調(diào)遞增區(qū)間為,若,則,此時(shí),當(dāng)時(shí),,當(dāng)時(shí),
∴函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.
綜上所述,當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間
為;當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間.
(2)由(1)得當(dāng)時(shí),函數(shù)在上單調(diào)遞增,故函數(shù)無極值
當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為,
∴有極大值,其值為,其中.
∵,即, ∴.
設(shè)函數(shù),則,
∴在上為增函數(shù),又,則 ,
∴ .
即,結(jié)合解得,∴實(shí)數(shù)的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間和極值;
若在上是單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】春節(jié)期間,由于高速公路繼續(xù)實(shí)行小型車免費(fèi),因此高速公路上車輛較多,某調(diào)查公司在某城市從七座以下小型汽車中按進(jìn)入服務(wù)區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進(jìn)行詢問調(diào)查,將他們?cè)谀扯胃咚俟返能囁伲╧m/h)分成六段:[60,65),[65,70),[70,75),[75,80),[80,85),[85,90]后得到如圖的頻率分布直方圖.
(Ⅰ)此調(diào)查公司在采樣中,用到的是什么抽樣方法?
(Ⅱ)求這40輛小型車輛車速的眾數(shù)、中位數(shù)以及平均數(shù)的估計(jì)值;
(Ⅲ)若從車速在[60,70)的車輛中任抽取2輛,求至少有一輛車的車速在[65,70)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市交通部門為了對(duì)該城市共享單車加強(qiáng)監(jiān)管,隨機(jī)選取了100人就該城市共享單車的推行情況進(jìn)行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評(píng)分值(百分制)按照分成5組,制成如圖所示頻率分直方圖.
(1)求圖中x的值;
(2)求這組數(shù)據(jù)的平均數(shù)和中位數(shù);
(3)已知滿意度評(píng)分值在內(nèi)的男生數(shù)與女生數(shù)3:2,若在滿意度評(píng)分值為的人中隨機(jī)抽取2人進(jìn)行座談,求2人均為男生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某校高中男生中隨機(jī)選取100名學(xué)生,將他們的體重(單位: )數(shù)據(jù)繪制成頻率分布直方圖,如圖所示.
(1)估計(jì)該校的100名同學(xué)的平均體重(同一組數(shù)據(jù)以該組區(qū)間的中點(diǎn)值作代表);
(2)若要從體重在, 內(nèi)的兩組男生中,用分層抽樣的方法選取5人,再從這5人中隨機(jī)抽取3人,記體重在內(nèi)的人數(shù)為,求其分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面內(nèi)兩點(diǎn)M(4,﹣2),N(2,4).
(1)求MN的垂直平分線方程;
(2)直線l經(jīng)過點(diǎn)A(3,0),且點(diǎn)M和點(diǎn)N到直線l的距離相等,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)解關(guān)于x的不等式x2-2mx+m+1>0;
(2)解關(guān)于x的不等式ax2-(2a+1)x+2<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C經(jīng)過點(diǎn),兩點(diǎn),且圓心C在直線上.
(1)求圓C的方程;
(2)設(shè),對(duì)圓C上任意一點(diǎn)P,在直線MC上是否存在與點(diǎn)M不重合的點(diǎn)N,使是常數(shù),若存在,求出點(diǎn)N坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是y=f(x)導(dǎo)函數(shù)的圖象,對(duì)于下列四個(gè)判斷:
①f(x)在[-2,-1]上是增函數(shù);
②x=-1是f(x)的極小值點(diǎn);
③f(x)在[-1,2]上是增函數(shù),在[2,4]上是減函數(shù);
④x=3是f(x)的極小值點(diǎn).
其中判斷正確的是_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com