【題目】某城市交通部門為了對該城市共享單車加強(qiáng)監(jiān)管,隨機(jī)選取了100人就該城市共享單車的推行情況進(jìn)行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照分成5組,制成如圖所示頻率分直方圖.

1)求圖中x的值;

2)求這組數(shù)據(jù)的平均數(shù)和中位數(shù);

3)已知滿意度評分值在內(nèi)的男生數(shù)與女生數(shù)3:2,若在滿意度評分值為的人中隨機(jī)抽取2人進(jìn)行座談,求2人均為男生的概率.

【答案】10.022)平均數(shù)77,中位數(shù)3.

【解析】

1)由頻率分布直方圖的性質(zhì)列方程能求出x

2)由頻率分布直方圖能求出這組數(shù)據(jù)的平均數(shù)和中位數(shù).

3)滿意度評分值在[5060)內(nèi)有5人,其中男生3人,女生2人,記“滿意度評分值為[50,60)的人中隨機(jī)抽取2人進(jìn)行座談,2人均為男生”為事件A,利用古典概型能求出2人均為男生的概率.

1)由,解得.

2)這組數(shù)據(jù)的平均數(shù)為.中位數(shù)設(shè)為m,則,解得.

3)滿意度評分值在內(nèi)有人,

其中男生3人,女生2.記為

記“滿意度評分值為的人中隨機(jī)抽取2人進(jìn)行座談,2人均為男生”為事件A

則總基本事件個數(shù)為 10個,A包含的基本事件個數(shù)為 3個,

利用古典概型概率公式可知.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,以軸為始邊做兩個銳角,它們的終邊分別與單位圓相交于A,B兩點(diǎn),已知A,B的橫坐標(biāo)分別為

1)求的值; 2)求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩點(diǎn),點(diǎn)P是橢圓上任意一點(diǎn),則點(diǎn)P到直線AB的距離最大值為( )

A. B. C. 6D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°,AC=AB=AA1EBC的中點(diǎn).

1)求證:AEB1C;

2)求異面直線AEA1C所成的角的大;

3)若GC1C中點(diǎn),求二面角C-AG-E的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某登山隊在山腳處測得山頂的仰角為,沿傾斜角為(其中)的斜坡前進(jìn)后到達(dá)處,休息后繼續(xù)行駛到達(dá)山頂

1)求山的高度;

2)現(xiàn)山頂處有一塔.從的登山途中,隊員在點(diǎn)處測得塔的視角為.若點(diǎn)處高度,則為何值時,視角最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PD垂直于底面ABCD,AD=PD=2

E、F分別為CDPB的中點(diǎn).

1)求證:EF⊥平面PAB;

2)設(shè),求直線AC與平面AEF所成角θ的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)是否存在實(shí)數(shù),使得函數(shù)的極值大于?若存在,求的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十九大以來,國家深入推進(jìn)精準(zhǔn)脫貧,加大資金投入,強(qiáng)化社會幫扶,為了更好的服務(wù)于人民,派調(diào)查組到某農(nóng)村去考察和指導(dǎo)工作.該地區(qū)有200戶農(nóng)民,且都從事水果種植,據(jù)了解,平均每戶的年收入為3萬元.為了調(diào)整產(chǎn)業(yè)結(jié)構(gòu),調(diào)查組和當(dāng)?shù)卣疀Q定動員部分農(nóng)民從事水果加工,據(jù)估計,若能動員戶農(nóng)民從事水果加工,則剩下的繼續(xù)從事水果種植的農(nóng)民平均每戶的年收入有望提高,而從事水果加工的農(nóng)民平均每戶收入將為萬元.

1)若動員戶農(nóng)民從事水果加工后,要使從事水果種植的農(nóng)民的總年收入不低于動員前從事水果種植的農(nóng)民的總年收入,求的取值范圍;

2)在(1)的條件下,要使這200戶農(nóng)民中從事水果加工的農(nóng)民的總收入始終不高于從事水果種植的農(nóng)民的總收入,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐OABCD中,OA⊥底面ABCD,且底面ABCD是邊長為2的正方形,且OA2,M,N分別為OA,BC的中點(diǎn).

1)求證:直線MN平面OCD;

2)求點(diǎn)B到平面DMN的距離.

查看答案和解析>>

同步練習(xí)冊答案