3.已知實數(shù)c>0,c≠1,設(shè)有兩個命題:命題p:函數(shù)y=cx是R上的單調(diào)減函數(shù);命題q:對于?x∈R,不等式x2+x+$\frac{c}{2}$>0恒成立.若命題p∨q為真,p∧q為假,求實數(shù)c的取值范圍.

分析 根據(jù)函數(shù)的性質(zhì)求出命題p,q的等價條件,結(jié)合復(fù)合命題之間的關(guān)系進(jìn)行求解即可.

解答 解:若函數(shù)y=cx是R上的單調(diào)減函數(shù),則0<c<1,
若對于?x∈R,不等式x2+x+$\frac{c}{2}$>0恒成立,則判別式△=1-4×$\frac{c}{2}$=1-2c<0,
即c>$\frac{1}{2}$,
若p∨q為真,p∧q為假,
則p和q有且只有一個為真命題,則
(1)若p為真q為假,
則$\left\{\begin{array}{l}{0<c<1}\\{0<c≤\frac{1}{2}}\end{array}\right.$,即0<c≤$\frac{1}{2}$,
(2)q為真p為假,
則$\left\{\begin{array}{l}{c>1}\\{c>\frac{1}{2}}\end{array}\right.$,即c>1,
∴綜上所述,若p∨q為真,p∧q為假,則c的取值范圍是0<c≤$\frac{1}{2}$,或c>1.

點評 本題主要考查復(fù)合命題真假之間的關(guān)系,求出命題的等價條件是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)直線l與拋物線y2=4x相交于A、B兩點,與圓(x-5)2+y2=r2(r>0)相切于點M,且M為線段AB的中點,若這樣的直線l恰有4條.則r的取值范圍是2<r<4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知f(x)是定義在(0,+∞)上的函數(shù),且對任意正數(shù)x,y都有f(xy)=f(x)+f(y),且當(dāng)x>1時,f(x)>0,f(3)=1.
(Ⅰ)集合A={x|f(x)>f(x-1)+2},B={x|f($\frac{(a+1)x-1}{x+1}$)>0},且滿足A∩B=∅,求正實數(shù)a的取值范圍;
(Ⅱ)設(shè)a<b,比較f($\frac{{e}^{a}+{e}^}{2}$)與f($\frac{{e}^-{e}^{a}}{b-a}$)的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.直線$y=-\sqrt{3}x+1$的傾斜角是(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.為得到函數(shù)$y=2sin(2x+\frac{π}{4})$的圖象,只需將函數(shù)y=2sin2x的圖象( 。
A.向左平移$\frac{π}{4}$單位B.向右平移$\frac{π}{4}$單位C.向左平移$\frac{π}{8}$單位D.向右平移$\frac{π}{8}$單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)$f(x)=2\sqrt{3}sinxcosx-2{sin^2}x+2$.
(1)求f(x)最小正周期和單調(diào)區(qū)間;
(2)當(dāng)$x∈[0,\frac{π}{2}]$時,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,E為AD上一點,四邊形BCDE為矩形,∠PAD=60°,PA=ED=2AE=2.
(I)若$\overrightarrow{PF}=λ\overrightarrow{PC}$(λ∈R),且PA∥平面BEF,求λ的值;
(Ⅱ)求證:CB⊥平面PEB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物.我國PM2.5標(biāo)準(zhǔn)采用世衛(wèi)組織設(shè)定的最寬限值.即PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級;在35微克/立方米--75微克/立方米之間空氣質(zhì)量為二級;在75微克/立方米以上空氣質(zhì)量為超標(biāo).某市環(huán)保局從市區(qū)今年9月每天的PM2.5監(jiān)測數(shù)據(jù)中,按系統(tǒng)抽樣方法抽取了某6天的數(shù)據(jù)作為樣本,其監(jiān)測值如莖葉圖所示.
(l)根據(jù)樣本數(shù)據(jù)估計今年9月份該市區(qū)每天PM2.5的平均值和方差;
(2)從所抽樣的6天中任意抽取三天,記ξ表示抽取的三天中空氣質(zhì)量為二級的天數(shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知曲線C的極坐標(biāo)是ρ=4,以極點為原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,又直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2+2t}\\{y=-5+t}\end{array}\right.$(t為參數(shù)).
(1)寫出曲線C與直線l的普通方程;
(2)設(shè)曲線C經(jīng)過伸縮變換$\left\{\begin{array}{l}{x′=x}\\{y′=\frac{\sqrt{3}}{2}y}\end{array}\right.$得到曲線C′,在曲線上找一點,使這一點到直線l的距離最短,并求出該點坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案