1.下列判斷正確的是(  )
A.函數(shù)f(x)=1既是奇函數(shù)又是偶函數(shù)B.函數(shù)f(x)=(1-x)$\sqrt{\frac{1+x}{1-x}}$是偶函數(shù)
C.函數(shù)f(x)=$\frac{{x}^{2}-2x}{x-2}$是奇函數(shù)D.函數(shù)f(x)=x+$\sqrt{{x}^{2}-1}$是非奇非偶函數(shù)

分析 根據(jù)奇函數(shù)、偶函數(shù)的定義便可判斷出A錯誤;根據(jù)奇函數(shù)、偶函數(shù)的定義域關(guān)于原點對稱,便可判斷出B,C錯誤;而對于D的判斷,可求f(2),f(-2),通過這兩個值的關(guān)系便可說明該函數(shù)非奇非偶.

解答 解:A.f(x)=1,∴f(-x)=1;
∴f(-x)=f(x),且f(-x)≠-f(x);
∴該函數(shù)是偶函數(shù),不是奇函數(shù);
∴該選項錯誤;
B.解$\frac{1+x}{1-x}≥0$得,-1≤x<1;
∴該函數(shù)定義域不關(guān)于原點對稱;
∴該函數(shù)不是偶函數(shù);
即該選項錯誤;
C.f(x)的定義域為{x|x≠2};
∴定義域不關(guān)于原點對稱;
∴該函數(shù)不是奇函數(shù),該選項錯誤;
D.f(2)=$2+\sqrt{3}$,f(-2)=-2$+\sqrt{3}$;
顯然f(-2)≠f(2),且f(-2)≠-f(2);
∴該函數(shù)為非奇非偶函數(shù);
∴該選項正確.
故選D.

點評 考查奇函數(shù)和偶函數(shù)的定義,以及奇函數(shù)和偶函數(shù)的定義域都關(guān)于原點對稱,在說明一個函數(shù)非奇非偶時,只需根據(jù)函數(shù)奇偶性的定義舉反例說明即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖所示,在正四棱柱ABCD-A1B1C1D1中,E、F分別是AA1、CC1的中點,AB=AD=1,AA1=$\sqrt{2}$.
(1)求證:平面B1C1E⊥平面ACD1;
(2)證明平面B1C1E∥平面ADF,并求兩個平面間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=x-a.g(x)=alnx,h(x)=f(x)-g(x),其中a是常數(shù).
(1)若f(x)對應(yīng)的直線是函數(shù)g(x)圖象的一條切線,求a的值;
(2)當(dāng)a≤0時.若對任意不相等的x1,x2∈(0,1],都有|h(x1)-h(x2)|<2015|$\frac{1}{{x}_{1}}$-$\frac{1}{{x}_{2}}$|,求a的取值范圍;
(3)若對任意的x1>x2>0,都有$\frac{g({x}_{1})-g({x}_{2})}{{x}_{1}-{x}_{2}}$>$\frac{{x}_{2}}{{{x}_{2}}^{2}+{{x}_{1}}^{2}}$,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知有三個數(shù)a=($\frac{11}{3}$)-2,b=40.3,c=80.25,則它們之間的大小關(guān)系是( 。
A.a<c<bB.a<b<cC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如圖,在棱長為1的正方體ABCD-A1B1C1D1中,E是線段AA1的中點,M是平面BB1D1D內(nèi)的點,則|AM|+|ME|的最小值是$\frac{3}{2}$;若|ME|≤1,則點M在平面BB1D1D內(nèi)形成的軌跡的面積等于$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若x•log32015=1,則2015x+2015-x=$\frac{10}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)f(x)=$\left\{\begin{array}{l}{{x}^{2}+1(x≥0)}\\{4xcosπx-1(x<0)}\end{array}\right.$,g(x)=kx-1(x∈R),若函數(shù)y=f(x)-g(x)在x∈[-2,3]內(nèi)有4個零點,則實數(shù)k的取值范圍是( 。
A.(2$\sqrt{2}$,$\frac{11}{3}$)B.(2$\sqrt{2}$,$\frac{11}{3}$]C.(2$\sqrt{3}$,4)D.(2$\sqrt{3}$,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在正方體ABCD-A1B1C1D1中,AA1=a,E,F(xiàn)分別是BC,DC的中點,則異面直線AD1與EF所成角為( 。
A.90°B.60°C.45°D.30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若直線y=x+b與曲線x=$\sqrt{1-{y^2}}$恰有一個公共點,則b的取值范圍是( 。
A.$[{-\sqrt{2},\sqrt{2}}]$B.$[{-1,\sqrt{2}}]$C.$(-1,1]∪\{\sqrt{2}\}$D.$(-1,1]∪\{-\sqrt{2}\}$

查看答案和解析>>

同步練習(xí)冊答案