設(shè)定點M(3,)與拋物線=2x上的點P的距離為,P到拋物線準線l的距為,則+取最小值時,P點的坐標為
A.(0,0) | B.(1,) | C.(2,2) | D.(,-) |
C
解析試題分析:先判斷出M(3,)在拋物線=2x的外部然后做出圖形(如下圖)則PM=d1過p作PN⊥直線x=則PN=d2,根據(jù)拋物線的定義可得d1+d2=PM+PF故要使取最小值則只有當P,M,F(xiàn)三點共線時成立因此可求出MF所在的直線方程然后與拋物線的方程聯(lián)立即可求出P點的坐標.
∵(3,)在拋物線=2x上且>∴M(3,)在拋物線=2x的外部,∵拋物線y2=2x的焦點F(,0),準線方程為x=-∴在拋物線=2x上任取點P過p作PN⊥直線x=則PN=
∴根據(jù)拋物線的定義可得=PF,∴ =PM+PF,∵PM+PFMF,∴當P,M,F(xiàn)三點共線時d1+d2取最小值,此時MF所在的直線方程為y-=(x-3)即4x-3y-2=0,令4x-3y-2=0, =2x,聯(lián)立方程組得到 x-=2,y=2,即當點的坐標為(2,2)時,取最小值,故選C
考點:拋物線的性質(zhì)
點評:本題主要考察拋物線的性質(zhì),屬常考題,較難.解題的關(guān)鍵是將d1+d2=PM+PN根據(jù)拋物線的定義轉(zhuǎn)化為=PM+PF.
科目:高中數(shù)學(xué) 來源: 題型:單選題
過雙曲線的左頂點A作斜率為2的直線l,若l與雙曲線M的兩條漸近線分別相交于點B.C,且,則雙曲線M的離心率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
北京奧運會主體育場“鳥巢”的簡化鋼結(jié)構(gòu)俯視圖如圖所示,內(nèi)外兩圈的鋼骨架是離心率相同的橢圓,從外層橢圓頂點A、B向內(nèi)層橢圓引切線AC、BD設(shè)內(nèi)層橢圓方程為+=1(ab0),外層橢圓方程為+=1(ab0,m1),AC與BD的斜率之積為-,則橢圓的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
從雙曲線的左焦點引圓的切線,切點為,延長交雙曲線右支于點,若為線段的中點,為坐標原點,則與 的大小關(guān)系為 ( )
A. | B. |
C. | D.不確定 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com