13.若x∈[0,+∞),則下列不等式不恒成立的是( 。
A.ex≥x+1B.ln(x+2)-ln(x+1)$<\frac{1}{x+1}$
C.$\frac{2}{π}$x+cosx≥1+sinxD.cosx≥1-$\frac{1}{2}$x2

分析 對選項加以判斷,運用函數(shù)的導數(shù),判斷符號可得單調(diào)性,對于不恒成立可通過舉特殊值,即可得到C不恒成立.

解答 解:對于A,由ex-x-1的導數(shù)為ex-1,當x≥0時,導數(shù)大于等于0,可得ex-x-1≥0,故A恒成立;
對于B,ln(x+2)-ln(x+1)-$\frac{1}{x+1}$=ln$\frac{x+2}{x+1}$-$\frac{1}{x+1}$=ln(1+$\frac{1}{x+1}$)-$\frac{1}{x+1}$,令t=$\frac{1}{x+1}$(0<t≤1),
ln(1+t)-t的導數(shù)為$\frac{1}{1+t}$-1=$\frac{-t}{1+t}$<0,可得ln(1+t)-t<0,即為ln(1+$\frac{1}{x+1}$)<$\frac{1}{x+1}$,故B恒成立;
對于C,取x=$\frac{π}{2}$時,$\frac{2}{π}$•$\frac{π}{2}$+cos$\frac{π}{2}$-1-sin$\frac{π}{2}$=-1<0,故C不恒成立;
對于D,cosx-1+$\frac{1}{2}$x2的導數(shù)為-sinx+x,當x≥0時,sinx≤x,可得cosx-1+$\frac{1}{2}$x2≥0,故D恒成立.
綜上可得,C不恒成立.
故選:C.

點評 本題考查不等式恒成立問題的解法,注意運用函數(shù)的單調(diào)性,考查化簡整理的運算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.今年暑假期間,雅禮中學組織學生進社區(qū)開展社會實踐活動.部分學生進行了關于“消防安全”的調(diào)查,隨機抽取了50名居民進行問卷調(diào)查,活動結束后,對問卷結果進行了統(tǒng)計,并將其中“是否知道滅火器使用方法(知道或不知道)”的調(diào)查結果統(tǒng)計如表:
年齡(歲)[10,20)[20,30)[30,40)[40,50)[50,60)[60,70]
頻數(shù)mn141286
知道的人數(shù)348732
(1)求上表中的m、n的值,并補全如圖所示的頻率分布直方圖;
(2)在被調(diào)查的居民中,若從年齡在[10,20),[20,30)的居民中各隨機選取1人參加消防知識講座,求選中的兩人中僅有一人不知道滅火器的使用方法的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.求證:$\sqrt{x}-\sqrt{x-1}<\sqrt{x-2}-\sqrt{x-3}(x≥3)$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖所示,平面ABC⊥平面BCDE,BC∥DE,$BC=\frac{1}{2}DE=2$,BE=CD=2,AB⊥BC,AB=3.M,N分別為DE,AD的中點.
(1)證明:平面MNC∥平面ABE;
(2)EC⊥CD,點P為棱AD的三等分點(近A),試求直線MP與平面ABE所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.雙“十一”結束之后,某網(wǎng)站針對購物情況進行了調(diào)查,參與調(diào)查的人主要集中在[20,50]歲之間,若規(guī)定:購物600(含600元)以下者,稱為“理智購物”,購物超過600元者被網(wǎng)友形象的稱為“剁手黨”,得到如下統(tǒng)計表:
分組編號年齡分組球迷所占比例
1[20,25)10000.5
2[25,30)18000.6
3[30,35)12000.5
4[35,40)a0.4
5[40,45)3000.2
6[45,50]2000.1
若參與調(diào)查的“理智購物”總?cè)藬?shù)為7720人.
(1)求a的值;
(2)從年齡在[20,35)的“剁手黨”中按照年齡區(qū)間分層抽樣的方法抽取20人;
①從這20人中隨機抽取2人,求這2人恰好屬于同一年齡區(qū)間的概率;
②從這20人中隨機抽取2人,用ζ表示年齡在[20,25)之間的人數(shù),求ξ的分布列及期望值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知正數(shù)x,y,z滿足x+y+z=xyz,且不等式$\frac{1}{x+y}$+$\frac{1}{y+z}$+$\frac{1}{z+x}$≤λ恒成立,求λ的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知x≥y>0.
(1)若xy=1,|x-1|+|y-1|≥1,求x的取值范圍.
(2)若x+y=1,證明:($\frac{1}{{x}^{2}}$-1)•($\frac{1}{{y}^{2}}$-1)≥9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.在平面直角坐標系xoy中,動點M到點F(1,0)的距離與它到直線x=2的距離之比為$\frac{{\sqrt{2}}}{2}$.
(Ⅰ)求動點M的軌跡E的方程;
(Ⅱ)設直線y=kx+m(m≠0)與曲線E交于A,B兩點,與x軸、y軸分別交于C,D兩點(且C,D在A,B之間或同時在A,B之外).問:是否存在定值k,對于滿足條件的任意實數(shù)m,都有△OAC的面積與△OBD的面積相等,若存在,求k的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.設函數(shù)f(x)=|x-$\frac{4}{a}$|+|x+a|(a>0).
(1)證明:f(x)≥4;
(2)若f(2)<5,求a的取值范圍.

查看答案和解析>>

同步練習冊答案