分析 (Ⅰ)求出每件產(chǎn)品的利潤(rùn),乘以價(jià)格得到利潤(rùn)L(萬元)與每件產(chǎn)品的售價(jià)x的函數(shù)關(guān)系式;
(Ⅱ)求出利潤(rùn)函數(shù)的導(dǎo)函數(shù),由a的范圍得到導(dǎo)函數(shù)零點(diǎn)的范圍,分類討論原函數(shù)在[9,11]上的單調(diào)性,并求出a在不同范圍內(nèi)的利潤(rùn)函數(shù)的最值.
解答 解:(Ⅰ)f(x)=(x-30)2(x-10-a),20≤x≤25…(3分)
(Ⅱ)f'(x)=2(x-30)•(x-10-a)+(x-30)2=(3x-2a-50)(x-30).…(4分)
令f'(x)=0,則$x=\frac{2a+50}{3}$或x=30,…(5分)
∵$3≤a≤7∴\frac{56}{3}≤\frac{2a+50}{3}≤\frac{64}{3}$…(6分)
∴①若$\frac{2a+50}{3}≤20$,即3≤a≤5時(shí),f'(x)≤0,x∈[20,25],
∴f(x)在[20,25]上是減函數(shù).
∴$f{(x)_{max}}=f(20)={(30-20)^2}(20-10-a)$=100(10-a)=1000-10a…(8分)
②若5<a≤7時(shí),$\frac{2a+50}{3}∈[20,25]$
當(dāng)$x∈[20,\frac{3a+50}{3}]$時(shí),f'(x)>0,此時(shí)f(x)在$[20,\frac{3a+50}{3}]$是增函數(shù);
當(dāng)$x∈[\frac{3a+50}{3},25]$時(shí),f'(x)<0,此時(shí)f(x)在$[\frac{3a+50}{3},25]$是減函數(shù).
∴$f{(x)_{max}}=f(\frac{2a+50}{3})={(30-\frac{2a+50}{3})^2}(\frac{2a+50}{3}-10-a)$=${(\frac{2a-40}{3})^2}(\frac{20-a}{3})=-\frac{{4{{(a-20)}^3}}}{27}$…(11分)
∴當(dāng)3≤a≤5時(shí),售價(jià)為20元時(shí)利潤(rùn)最大,最大利潤(rùn)g(a)為1000-10a;
當(dāng)5<a≤7時(shí),售價(jià)為$\frac{2a+50}{3}$元時(shí)利潤(rùn)最大,最大利潤(rùn)g(a)為$-\frac{{4{{(a-20)}^3}}}{27}$.…(12分)
點(diǎn)評(píng) 本題考查函數(shù)、導(dǎo)數(shù)及其應(yīng)用等知識(shí),考查運(yùn)用數(shù)學(xué)知識(shí)分析和解決實(shí)際問題的能力,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<1 | B. | a<2 | C. | a≤2 | D. | a≤3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x^2}{2}$-$\frac{y^2}{2}$=1 | B. | $\frac{x^2}{4}$-$\frac{y^2}{4}$=1 | C. | $\frac{x^2}{4}$-y2=1 | D. | $\frac{x^2}{2}$-y2=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1)與(2)的假設(shè)都錯(cuò)誤 | B. | (1)與(2)的假設(shè)都正確 | ||
C. | (1)的假設(shè)錯(cuò)誤;(2)的假設(shè)正確 | D. | (1)的假設(shè)正確;(2)的假設(shè)錯(cuò)誤 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2 | C. | $\sqrt{5}$ | D. | $\sqrt{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y=cos(\frac{x}{2}+\frac{π}{6})$ | B. | $y=sin(2x+\frac{5π}{6})$ | C. | $y=cos(2x-\frac{π}{3})$ | D. | $y=sin(2x-\frac{π}{6})$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com