【題目】從拋物線上各點(diǎn)向x軸作垂線,垂線段中點(diǎn)的軌跡為E.

1)求曲線E的方程;

2)若直線與曲線E相交于A,B兩點(diǎn),求證:;

3)若點(diǎn)F為曲線E的焦點(diǎn),過點(diǎn)的直線與曲線E交于MN兩點(diǎn),直線分別與曲線E交于C,D兩點(diǎn),設(shè)直線,斜率分別為,求的值.

【答案】1;(2)證明見解析;(3.

【解析】

(1)設(shè)垂線段的中點(diǎn)為時(shí)拋物線上的點(diǎn),得出,代入拋物線方程可求出曲線E的方程.
(2)將直線代入拋物線方程,求得,代入直線方程求得,由,即可證明.
(3)設(shè)直線,設(shè),聯(lián)立直線方程與拋物線方程,利用韋達(dá)定理的關(guān)系得,由MF,C三點(diǎn)共線,MF,C三點(diǎn)共線,

利用的坐標(biāo)表示出的坐標(biāo),即可得到答案.

1)令拋物線上一點(diǎn),設(shè)垂線段的中點(diǎn)為.

由已知得,

滿足,∴,則,即

∴曲線E的方程為:

2)由,可得,

設(shè),由于

由韋達(dá)定理可知:,

,

,

3)設(shè),直線,則

恒成立,

設(shè)

M,F,C三點(diǎn)共線,得,化簡為:,從而

同理,由NF,D三點(diǎn)共線,得

所以

所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,三棱柱的側(cè)棱垂直于底面,且底面是邊長為2的正三角形,,點(diǎn)D,E,F分別是所在棱的中點(diǎn).

(1)在線段上找一點(diǎn)使得平面∥平面,給出點(diǎn)的位置并證明你的結(jié)論;

(2)在(1)的條件下,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著經(jīng)濟(jì)模式的改變,微商和電商已成為當(dāng)今城鄉(xiāng)一種新型的購銷平臺.已知經(jīng)銷某種商品的電商在任何一個(gè)銷售季度內(nèi),每售出噸該商品可獲利潤萬元,未售出的商品,每噸虧損萬元.根據(jù)往年的銷售經(jīng)驗(yàn),得到一個(gè)銷售季度內(nèi)市場需求量的頻率分布直方圖如圖所示.已知電商為下一個(gè)銷售季度籌備了噸該商品.現(xiàn)以(單位:噸,)表示下一個(gè)銷售季度的市場需求量,(單位:萬元)表示該電商下一個(gè)銷售季度內(nèi)經(jīng)銷該商品獲得的利潤.

1)將表示為的函數(shù),求出該函數(shù)表達(dá)式;

2)根據(jù)直方圖估計(jì)利潤不少于57萬元的概率;

3)根據(jù)頻率分布直方圖,估計(jì)一個(gè)銷售季度內(nèi)市場需求量的平均數(shù)與中位數(shù)的大。ūA舻叫(shù)點(diǎn)后一位).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)是圓上的一動(dòng)點(diǎn),點(diǎn),點(diǎn)在線段上,且滿足.

(1)求點(diǎn)的軌跡的方程;

(2)設(shè)曲線軸的正半軸,軸的正半軸的交點(diǎn)分別為點(diǎn),,斜率為的動(dòng)直線交曲線、兩點(diǎn),其中點(diǎn)在第一象限,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】松、竹、梅經(jīng)冬不衰,因此有“歲寒三友”之稱.在我國古代的詩詞和典籍中有很多與松和竹相關(guān)的描述和記載,宋代劉學(xué)箕的《念奴嬌·水軒沙岸》的“綴松黏竹,恍然如對三絕”描寫了大雪后松竹并生相依的美景;宋元時(shí)期數(shù)學(xué)名著《算學(xué)啟蒙》中亦有關(guān)于“松竹并生”的問題:松長五尺,竹長兩尺,松日自半,竹日自倍,松竹何日而長等.現(xiàn)欲知幾日后,竹長超過松長一倍.為了解決這個(gè)新問題,設(shè)計(jì)下面的程序框圖,若輸入的,,則輸出的的值為(

A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與橢圓相切于第一象限的點(diǎn),且直線軸,軸分別交于點(diǎn),當(dāng)為坐標(biāo)原點(diǎn))的面積最小時(shí),,為橢圓的兩個(gè)焦點(diǎn)),則此時(shí)的平分線的長度為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國2019年新年賀歲大片《流浪地球》自上映以來引發(fā)了社會的廣泛關(guān)注,受到了觀眾的普遍好評.假設(shè)男性觀眾認(rèn)為《流浪地球》好看的概率為,女性觀眾認(rèn)為《流浪地球》好看的概率為,某機(jī)構(gòu)就《流浪地球》是否好看的問題隨機(jī)采訪了4名觀眾(其中22女).

1)求這4名觀眾中女性認(rèn)為好看的人數(shù)比男性認(rèn)為好看的人數(shù)多的概率;

2)設(shè)表示這4名觀眾中認(rèn)為《流浪地球》好看的人數(shù),求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在定義域上滿足恒成立.

(1)求實(shí)數(shù)的值;

(2)令上的最小值為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知對數(shù)函數(shù)過定點(diǎn)(其中),函數(shù)(其中的導(dǎo)函數(shù),,為常數(shù))

1)討論的單調(diào)性;

2)若對恒成立,且)處的導(dǎo)數(shù)相等,求證:.

查看答案和解析>>

同步練習(xí)冊答案