【題目】松、竹、梅經(jīng)冬不衰,因此有“歲寒三友”之稱.在我國(guó)古代的詩(shī)詞和典籍中有很多與松和竹相關(guān)的描述和記載,宋代劉學(xué)箕的《念奴嬌·水軒沙岸》的“綴松黏竹,恍然如對(duì)三絕”描寫了大雪后松竹并生相依的美景;宋元時(shí)期數(shù)學(xué)名著《算學(xué)啟蒙》中亦有關(guān)于“松竹并生”的問(wèn)題:松長(zhǎng)五尺,竹長(zhǎng)兩尺,松日自半,竹日自倍,松竹何日而長(zhǎng)等.現(xiàn)欲知幾日后,竹長(zhǎng)超過(guò)松長(zhǎng)一倍.為了解決這個(gè)新問(wèn)題,設(shè)計(jì)下面的程序框圖,若輸入的,,則輸出的的值為( )
A.4B.5C.6D.7
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在考察疫情防控工作中,某區(qū)衛(wèi)生防控中心提出了“要堅(jiān)持開展愛國(guó)衛(wèi)生運(yùn)動(dòng),從人居環(huán)境改善、飲食習(xí)慣、社會(huì)心理健康、公共衛(wèi)生設(shè)施等多個(gè)方面開展,特別是要堅(jiān)決杜絕食用野生動(dòng)物的陋習(xí),提倡文明健康、綠色環(huán)保的生活方式”的要求.某小組通過(guò)問(wèn)卷調(diào)查,隨機(jī)收集了該區(qū)居民六類日常生活習(xí)慣的有關(guān)數(shù)據(jù).六類習(xí)慣是:(1)衛(wèi)生習(xí)慣狀況類;(2)垃圾處理狀況類;(3)體育鍛煉狀況類;(4)心理健康狀況類;(5)膳食合理狀況類;(6)作息規(guī)律狀況類.經(jīng)過(guò)數(shù)據(jù)整理,得到下表:
衛(wèi)生習(xí)慣狀況類 | 垃圾處理狀況類 | 體育鍛煉狀況類 | 心理健康狀況類 | 膳食合理狀況類 | 作息規(guī)律狀況類 | |
有效答卷份數(shù) | 380 | 550 | 330 | 410 | 400 | 430 |
習(xí)慣良好頻率 | 0.6 | 0.9 | 0.8 | 0.7 | 0.65 | 0.6 |
假設(shè)每份調(diào)查問(wèn)卷只調(diào)查上述六類狀況之一,各類調(diào)查是否達(dá)到良好標(biāo)準(zhǔn)相互獨(dú)立.
(1)從小組收集的有效答卷中隨機(jī)選取1份,求這份試卷的調(diào)查結(jié)果是膳食合理狀況類中習(xí)慣良好者的概率;
(2)從該區(qū)任選一位居民,試估計(jì)他在“衛(wèi)生習(xí)慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習(xí)慣方面,至少具備兩類良好習(xí)慣的概率;
(3)利用上述六類習(xí)慣調(diào)查的排序,用“”表示任選一位第k類受訪者是習(xí)慣良好者,“”表示任選一位第k類受訪者不是習(xí)慣良好者().寫出方差,,,,,的大小關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市環(huán)保部門對(duì)該市市民進(jìn)行了一次垃圾分類知識(shí)的網(wǎng)絡(luò)問(wèn)卷調(diào)查,每位市民僅有一次參加機(jī)會(huì),通過(guò)隨機(jī)抽樣,得到參與問(wèn)卷調(diào)查的100人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如表所示:
組別 | ||||||
男 | 2 | 3 | 5 | 15 | 18 | 12 |
女 | 0 | 5 | 10 | 10 | 7 | 13 |
(1)若規(guī)定問(wèn)卷得分不低于70分的市民稱為“環(huán)保關(guān)注者”,請(qǐng)完成答題卡中的列聯(lián)表,并判斷能否在犯錯(cuò)誤概率不超過(guò)0.05的前提下,認(rèn)為是否為“環(huán)保關(guān)注者”與性別有關(guān)?
(2)若問(wèn)卷得分不低于80分的人稱為“環(huán)保達(dá)人”.視頻率為概率.
①在我市所有“環(huán)保達(dá)人”中,隨機(jī)抽取3人,求抽取的3人中,既有男“環(huán)保達(dá)人”又有女“環(huán)保達(dá)人”的概率;
②為了鼓勵(lì)市民關(guān)注環(huán)保,針對(duì)此次的調(diào)查制定了如下獎(jiǎng)勵(lì)方案:“環(huán)保達(dá)人”獲得兩次抽獎(jiǎng)活動(dòng);其他參與的市民獲得一次抽獎(jiǎng)活動(dòng).每次抽獎(jiǎng)獲得紅包的金額和對(duì)應(yīng)的概率.如下表:
紅包金額(單位:元) | 10 | 20 |
概率 |
現(xiàn)某市民要參加此次問(wèn)卷調(diào)查,記(單位:元)為該市民參加間卷調(diào)查獲得的紅包金額,求的分布列及數(shù)學(xué)期望.
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的幾何體中,底面為菱形, , , 與相交于點(diǎn),四邊形為直角梯形, , , ,平面底面.
(1)證明:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從拋物線上各點(diǎn)向x軸作垂線,垂線段中點(diǎn)的軌跡為E.
(1)求曲線E的方程;
(2)若直線與曲線E相交于A,B兩點(diǎn),求證:;
(3)若點(diǎn)F為曲線E的焦點(diǎn),過(guò)點(diǎn)的直線與曲線E交于M,N兩點(diǎn),直線,分別與曲線E交于C,D兩點(diǎn),設(shè)直線,斜率分別為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,四邊形是矩形,,,為正三角形,且平面平面,、分別為、的中點(diǎn).
(1)證明:平面;
(2)求幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一個(gè)長(zhǎng)方形木塊,三個(gè)側(cè)面積分別為8,12,24,現(xiàn)將其削成一個(gè)正四面體模型,則該正四面體模型棱長(zhǎng)的最大值為( )
A.2B.C.4D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】誠(chéng)信是立身之本,道德之基,我校學(xué)生會(huì)創(chuàng)設(shè)了“誠(chéng)信水站”,既便于學(xué)生用水,又推進(jìn)誠(chéng)信教育,并用“”表示每周“水站誠(chéng)信度”,為了便于數(shù)據(jù)分析,以四周為一周期,如表為該水站連續(xù)十二周(共三個(gè)周期)的誠(chéng)信數(shù)據(jù)統(tǒng)計(jì):
第一周 | 第二周 | 第三周 | 第四周 | |
第一周期 | ||||
第二周期 | ||||
第三周期 |
(Ⅰ)計(jì)算表中十二周“水站誠(chéng)信度”的平均數(shù);
(Ⅱ)若定義水站誠(chéng)信度高于的為“高誠(chéng)信度”,以下為“一般信度”則從每個(gè)周期的前兩周中隨機(jī)抽取兩周進(jìn)行調(diào)研,計(jì)算恰有兩周是“高誠(chéng)信度”的概率;
(Ⅲ)已知學(xué)生會(huì)分別在第一個(gè)周期的第四周末和第二個(gè)周期的第四周末各舉行了一次“以誠(chéng)信為本”的主題教育活動(dòng),根據(jù)已有數(shù)據(jù),說(shuō)明兩次主題教育活動(dòng)的宣傳效果,并根據(jù)已有數(shù)據(jù)陳述理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com