20.設函數(shù)f(x)=$\frac{(1+a){x}^{2}+1}{bx+c}$為奇函數(shù),其中a,b,c∈Z,又滿足f(1)=3,5<f(3)<7.
(1)求函數(shù)f(x)的解析式;
(2)用單調(diào)性定義,判斷函數(shù)f(x)在(-∞,0)上的增減性.

分析 (1)根據(jù)f(-x)=-f(x),求得c的值,再根據(jù)f(1)=3,5<f(3)<7,求得整數(shù)a、b的值,可得函數(shù)的解析式.
(2)假設x1<x2<0,化簡f(x1)-f(x2),分類討論,求得它的單調(diào)性.

解答 解:(1)∵函數(shù)f(x)=$\frac{(1+a){x}^{2}+1}{bx+c}$為奇函數(shù),其中a,b,c∈Z,
∴f(-x)=$\frac{{(1+a)•x}^{2}+1}{-bx+c}$=-f(x)=$\frac{{(1+a)x}^{2}+1}{-bx-c}$,∴c=0,f(x)=$\frac{{(1+a)•x}^{2}+1}{bx}$.
又滿足f(1)=$\frac{a+2}$=3,∴a=3b-2.
∵5<f(3)<7,∴5<$\frac{9a+10}{3b}$<7,即5<$\frac{27b-8}{3b}$<7,1<$\frac{4}{3b}$<2,∴b=1,∴a=3b-2=1.
故函數(shù)f(x)的解析式為f(x)=$\frac{{2x}^{2}+1}{x}$=2x+$\frac{1}{x}$.
(2)假設x1<x2<0,則f(x1)-f(x2)=2x1+$\frac{1}{{x}_{1}}$-2x2-$\frac{1}{{x}_{2}}$=2(x1-x2)+$\frac{{x}_{2}{-x}_{1}}{{x}_{1}{•x}_{2}}$=(x2-x1)•($\frac{1}{{x}_{1}{•x}_{2}}$-2),
當x1<x2<-$\frac{\sqrt{2}}{2}$時,x1•x2>$\frac{1}{2}$,$\frac{1}{{x}_{1}{•x}_{2}}$<2,∵x2-x1>0,$\frac{1}{{x}_{1}{•x}_{2}}$-2<0,∴(x2-x1)•($\frac{1}{{x}_{1}{•x}_{2}}$-2)<0,
即f(x1)<f(x2),故函數(shù)f(x)在(-∞,-$\frac{\sqrt{2}}{2}$)上單調(diào)遞增.
當-$\frac{\sqrt{2}}{2}$≤x1<x2<0時,x1•x2<$\frac{1}{2}$,$\frac{1}{{x}_{1}{•x}_{2}}$>2,∵x2-x1>0,$\frac{1}{{x}_{1}{•x}_{2}}$-2>0,∴(x2-x1)•($\frac{1}{{x}_{1}{•x}_{2}}$-2)>0,
即f(x1)>f(x2),故函數(shù)f(x)在(-∞,-$\frac{\sqrt{2}}{2}$]上單調(diào)遞減.

點評 本題主要考查奇函數(shù)的定義求函數(shù)的解析式,用函數(shù)的單調(diào)性的定義判斷函數(shù)的單調(diào)性,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

10.對數(shù)式log(a-2)(5-a)中實數(shù)a的取值范圍是( 。
A.(-∞,5)B.(2,5)C.(2,3)∪(3,5)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知全集U為R,集合A={x|x2<4},B=$\left\{{x\left|{y=lo{g_{\frac{1}{2}}}$(x-2)},則下列關系正確的是( 。
A.A∪B=RB.A∪(∁B)=RC.(∁A)∪B=RD.A∩(∁B)=A

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖,直角三角形ABC的頂點坐標A(-2,0),直角頂點B(0,-2$\sqrt{2}$),頂點C在x軸上,點P為線段OA的中點,三角形ABC外接圓的圓心為M.
(1)求BC邊所在直線方程;
(2)求圓M的方程;
(3)直線l過點P且傾斜角為$\frac{π}{3}$,求該直線被圓M截得的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知集合A={x|x∈N,$\frac{12}{6-x}$∈N},則集合A用列舉法表示為{0,2,3,4,5}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設隨機變量ξ的分布列為
ξ123
P0.5xy
若$E(ξ)=\frac{15}{8}$,則D(ξ)的值為( 。
A.$\frac{55}{64}$B.$\frac{33}{64}$C.$\frac{7}{32}$D.$\frac{9}{32}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.請用多種方法證明不等式:(用一種方法得8分,兩種方法得14分,三種方法得16分.)
已知a,b∈(0,+∞),證明:$\frac{a}{{\sqrt}}$+$\frac{{\sqrt{a}}}$≥$\sqrt{a}$+$\sqrt$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.以下四個命題中,正確的是( 。
A.第一象限角一定是銳角
B.{α|α=kπ+$\frac{π}{6}$,k∈Z}≠{β|β=-kπ+$\frac{π}{6}$,k∈Z}
C.若α是第二象限的角,則sin2α<0
D.第四象限的角可表示為{α|2kπ+$\frac{3}{2}$π<α<2kπ,k∈Z}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(1-x)^{2},x≤0}\\{1-x,x>0}\end{array}\right.$,則f(f(3))=(  )
A.4B.9C.-3D.-2

查看答案和解析>>

同步練習冊答案