【題目】已知各項均不為0的數(shù)列{an}滿足a1=a,a2=b,且an2=an﹣1an+1+λ(n≥2,n∈N),其中λ∈R.
(1)若λ=0,求證:數(shù)列{an}是等比數(shù)列;
(2)求證:數(shù)列{an}是等差數(shù)列的充要條件是λ=(b﹣a)2;
(3)若數(shù)列{bn}為各項均為正數(shù)的等比數(shù)列,且對任意的n∈N* , 滿足bn﹣an=1,求證:數(shù)列{(﹣1)nanbn}的前2n項和為常數(shù).
【答案】
(1)證明:若λ=0,則an2=an﹣1an+1,n≥2,n∈N,
即有 = = =…= = = ,
則數(shù)列{an}是首項為a,公比為 的等比數(shù)列
(2)證明:①若數(shù)列{an}是等差數(shù)列,可得公差為b﹣a,首項為a,
即有an=a+(n﹣1)(b﹣a),
則λ=an2﹣an﹣1an+1=[a+(n﹣1)(b﹣a)]2﹣[a+(n﹣2)(b﹣a)][a+n(b﹣a)]
=2a(n﹣1)(b﹣a)+(n﹣1)2(b﹣a)2﹣n(n﹣2)(b﹣a)2﹣(2n﹣2)a(b﹣a)=(b﹣a)2;
②若λ=(b﹣a)2,即an2=an﹣1an+1+(b﹣a)2,(n≥2,n∈N),
由a1=a,a2=b,可得a22=a1a3+(b﹣a)2,解得a3=2b﹣a,
同樣可得a4=3b﹣2a,…,猜想an=(n﹣1)b﹣(n﹣2)a=n(b﹣a)+2a﹣b,
證明:當(dāng)n=1時,a1=b﹣a+2a﹣b=a,成立;
當(dāng)n=2時,a2=2b﹣2a+2a﹣b=b,成立;
假設(shè)n≤k(k≥2,k∈N)有ak=k(b﹣a)+2a﹣b,
且ak2=ak﹣1ak+1+(b﹣a)2,
可得ak+1= = = =(k+1)(b﹣a)+2a﹣b;
故當(dāng)n=k+1時,ak+1=(k+1)(b﹣a)+2a﹣b,成立.
綜上可得,數(shù)列{an}是等差數(shù)列的充要條件是λ=(b﹣a)2
(3)證明:對任意的n∈N*,滿足bn﹣an=1,可得b1=1+a,b2=1+b,
公比為 ,bn=(1+a)( )n﹣1,
an=bn﹣1=(1+a)( )n﹣1﹣1,
即有(bn﹣1)2=(bn﹣1﹣1)(bn+1﹣1)+λ,
則(b2﹣1)2=(b1﹣1)(b3﹣1)+λ,
(b3﹣1)2=(b2﹣1)(b4﹣1)+λ,
可得b2﹣a( ﹣1)=( ﹣1)2﹣b( ﹣1),
化簡整理可得a=b,
則(﹣1)nanbn=(﹣1)na(1+a),
則數(shù)列{(﹣1)nanbn}的前2n項和
﹣a(1+a)+a(1+a)﹣a(1+a)+a(1+a)﹣…+a(1+a)=0即為常數(shù)
【解析】(1)運用等比數(shù)列的定義,即可得到 = ,進而得到證明;(2)①若數(shù)列{an}是等差數(shù)列,運用等差數(shù)列的通項公式,代入即可得到λ=(b﹣a)2;②若λ=(b﹣a)2 , 歸納,猜想an=(n﹣1)b﹣(n﹣2)a=n(b﹣a)+2a﹣b,再由數(shù)學(xué)歸納法證明即可;(3)求得bn=(1+a)( )n﹣1 , 再由恒成立思想,可得(b2﹣1)2﹣(b1﹣1)(b3﹣1)=(b3﹣1)2﹣(b2﹣1)(b4﹣1),化簡整理可得a=b,進而得到(﹣1)nanbn=(﹣1)na(1+a),即可得到所求和.
【考點精析】本題主要考查了等差關(guān)系的確定和等比關(guān)系的確定的相關(guān)知識點,需要掌握如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),即-=d ,(n≥2,n∈N)那么這個數(shù)列就叫做等差數(shù)列;等比數(shù)列可以通過定義法、中項法、通項公式法、前n項和法進行判斷才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln x-mx+n,m,n∈R.
(1)若函數(shù)f(x)的圖像在點(1,f(1))處的切線為y=2x-1,求m,n的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若n=0,不等式f(x)+m<0對x∈(1,+∞)恒成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),曲線在點處的切線方程為.
(1)求的解析式;
(2)證明:曲線上任一點處的切線與直線和直線所圍成的三角形面積為定值,并求此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校共有學(xué)生15 000人,其中男生10 500人,女生4500人.為調(diào)查該校學(xué)生每周平均體育運動時間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運動時間的樣本數(shù)據(jù)(單位:小時).
(1)應(yīng)收集多少位女生的樣本數(shù)據(jù)?
(2)根據(jù)這300個樣本數(shù)據(jù),得到學(xué)生每周平均體育運動時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)的分組區(qū)間為:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估計該校學(xué)生每周平均體育運動時間超過4小時的概率.
(3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運動時間超過4小時,請完成每周平均體育運動時間與性別列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該校學(xué)生的每周平均體育運動時間與性別有關(guān)”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出如下四個說法:
①已知p,q都是命題,若p∧q為假命題,則p,q均為假命題;
②命題“若a>b,則3a>3b-1”的否命題為“若a≤b,則3a≤3b-1”;
③命題“x∈R,x2+1≥0”的否定是“x0∈R,+1<0”;
④“a≥0”是“x0∈R,a+x0+1≥0”的充分必要條件.
其中正確說法的序號是 ( )
A. ①③ B. ②③ C. ②③④ D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形.點E是棱PC的中點,平面ABE與棱PD交于點F.
(Ⅰ)求證:AB∥EF;
(Ⅱ)若PA=AD,且平面PAD⊥平面ABCD,求證:AF⊥平面PCD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,圓C1:(x﹣1)2+y2=2,圓C2:(x﹣m)2+(y+m)2=m2 . 圓C2上存在點P滿足:過點P向圓C1作兩條切線PA,PB,切點為A,B,△ABP的面積為1,則正數(shù)m的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知拋物線y2=2px(p>0)上一點P( ,m)到準(zhǔn)線的距離與到原點O的距離相等,拋物線的焦點為F.
(1)求拋物線的方程;
(2)若A為拋物線上一點(異于原點O),點A處的切線交x軸于點B,過A作準(zhǔn)線的垂線,垂足為點E.試判斷四邊形AEBF的形狀,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com