6.已知向量$\overrightarrow a=(1,2)$,$\overrightarrow b=(-2,-2)$,則$|\overrightarrow a-\overrightarrow b|$的值為5.

分析 求出$\overrightarrow{a}-\overrightarrow$的坐標(biāo),再計(jì)算模長(zhǎng).

解答 解:$\overrightarrow{a}-\overrightarrow$=(3,4),∴|$\overrightarrow{a}-\overrightarrow$|=$\sqrt{{3}^{2}+{4}^{2}}$=5.
故答案為:5.

點(diǎn)評(píng) 本題考查了向量的坐標(biāo)運(yùn)算和模長(zhǎng)計(jì)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.《萊因德紙草書》(Rhind Papyrus)是世界上最古老的數(shù)學(xué)著作之一,書中有這樣一道題:把120個(gè)面包分成5份,使每份的面包數(shù)成等差數(shù)列,且較多的三份之和恰好是較少的兩份之和的7倍,則最少的那份有( 。﹤(gè)面包.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在同一坐標(biāo)系中,函數(shù)y=ax+b與y=logax的圖象可以是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$=$\overrightarrow{0}$,且$\overrightarrow{a}$與$\overrightarrow{c}$的夾角為$\frac{π}{3}$,|$\overrightarrow$|=$\sqrt{3}$|$\overrightarrow{a}$|,設(shè)$\overrightarrow{a}$,$\overrightarrow$的夾角為θ,則tanθ=( 。
A.$\sqrt{3}$B.$\frac{\sqrt{3}}{3}$C.-1D.-$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.命題“若α是銳角,則sinα>0”的逆否命題為“若sinα≤0,則α不是銳角”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=3sin(ωx+φ)(ω>0,0≤φ<π)的部分圖象如圖所示,則該函數(shù)的解析式為f(x)=$3sin(\frac{π}{4}x+\frac{π}{4})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)命題p的否定是“$?x>0,\sqrt{x}>x+1$”,則命題p是?x>0,$\sqrt{x}≤x+1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.對(duì)于任意的n∈N*,記集合En={1,2,3,…,n},Pn=$\left\{{x\left|{x=\frac{a}{{\sqrt}},a∈{E_n},b∈{E_n}}\right.}\right\}$.若集合A滿足下列條件:①A⊆Pn;②?x1,x2∈A,且x1≠x2,不存在k∈N*,使x1+x2=k2,則稱A具有性質(zhì)Ω.
如當(dāng)n=2時(shí),E2={1,2},P2=$\{1,2,\frac{1}{{\sqrt{2}}},\frac{2}{{\sqrt{2}}}\}$.?x1,x2∈P2,且x1≠x2,不存在k∈N*,使x1+x2=k2,所以P2具有性質(zhì)Ω.
(Ⅰ)寫出集合P3,P5中的元素個(gè)數(shù),并判斷P3是否具有性質(zhì)Ω.
(Ⅱ)證明:不存在A,B具有性質(zhì)Ω,且A∩B=∅,使E15=A∪B.
(Ⅲ)若存在A,B具有性質(zhì)Ω,且A∩B=∅,使Pn=A∪B,求n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列不等關(guān)系正確的是(  )
A.log43<log34B.log${\;}_{\frac{1}{3}}$3<log${\;}_{\frac{1}{2}}$3
C.3${\;}^{\frac{1}{2}}$$<{3}^{\frac{1}{3}}$D.3${\;}^{\frac{1}{2}}$<log32

查看答案和解析>>

同步練習(xí)冊(cè)答案