16.在△ABC中,根據(jù)下列條件,求三角形的面積S.
(1)已知a=3cm,c=4cm,B=30°;
(2)已知A=75°,C=45°,b=4cm.

分析 (1)把已知數(shù)據(jù)代入三角形的面積公式計算可得;
(2)由題意可得B=60°,由正弦定理可得c,由和差角的三角函數(shù)公式可得sinA,代入三角形的面積公式計算可得.

解答 解:(1)∵在△ABC中a=3cm,c=4cm,B=30°,
∴三角形的面積S=$\frac{1}{2}$acsinB=$\frac{1}{2}$×3×4×$\frac{1}{2}$=3cm2;
(2)∵在△ABC中A=75°,C=45°,b=4cm,
∴B=180°-(75°+45°)=60°,
由正弦定理可得c=$\frac{bsinC}{sinB}$=$\frac{4×\frac{\sqrt{2}}{2}}{\frac{\sqrt{3}}{2}}$=$\frac{4\sqrt{6}}{3}$cm,
∴sinA=sin(B+C)=$\frac{\sqrt{2}}{2}×\frac{1}{2}$+$\frac{\sqrt{2}}{2}×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{2}+\sqrt{6}}{4}$,
∴三角形的面積S=$\frac{1}{2}$bcsinA=$\frac{1}{2}$×4×$\frac{4\sqrt{6}}{3}$×$\frac{\sqrt{2}+\sqrt{6}}{4}$=$\frac{12+4\sqrt{3}}{3}$cm2

點評 本題考查正弦定理解三角形,涉及三角形的面積公式及和差角的三角函數(shù)公式,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知集合M={(x,y)|y=f(x)},若對于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,則稱集合M是“Ω集合”.給出下列4個集合:
①M={(x,y)|y=lgx}               
②M={(x,y)|y=cosx+sinx}
③M={(x,y)|y=-$\frac{1}{x}$}               
④M={(x,y)|y=ex-3}
其中是“Ω集合”的所有序號是(  )
A.②③B.②④C.①②④D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)兩條直線的方程分別為x+$\sqrt{3}$y+a=0,x+$\sqrt{3}$y+b=0,已知a,b是方程x2+2x+c=0的兩個實根,且0≤c≤$\frac{1}{2}$,則這兩條直線之間的距離的最大值和最小值的差為( 。
A.$\frac{{2-\sqrt{2}}}{2}$B.1C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{4-\sqrt{14}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知Sn為數(shù)列{an}的前n項和,且滿足an=2Sn-1+2(n≥2);數(shù)列{bn}滿足b1+b2+b3+…+bn=n2+n.
(1)數(shù)列{an}是等比數(shù)列嗎?請說明理由;
(Ⅱ)若a1=b1,求數(shù)列{an•bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ為常數(shù),A>0,ω>0)的部分圖象如圖所示,則f($\frac{19π}{6}$)的值為( 。
A.0B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.-$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)2sinx=a,則a的取值范圍是[-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知點P(x,y)是曲線C:$\left\{\begin{array}{l}{x=3+cosθ}\\{y=2+\sqrt{3}sinθ}\end{array}\right.$上的任意一點,求3x+y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)=($\sqrt{3}$-tanx)cos2x,x∈($\frac{π}{2}$,π]的單調(diào)減區(qū)間是[$\frac{11π}{12}$,π].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在等差數(shù)列{an}中,a1=3,其中前n項和為Sn.等比數(shù)列{bn}的各項均為正數(shù),b1=1,且b2+S3=21,b3=S2
(1)求an與bn
(2)設(shè)數(shù)列{bn}的前n項和為Tn,求使不等式4Tn>S15成立的最小正整數(shù)n的值.

查看答案和解析>>

同步練習(xí)冊答案