14.如圖將邊長為1的正六邊形ABCDEF繞著直線l旋轉(zhuǎn)180°,則旋轉(zhuǎn)所形成的幾何體的表面積為2$\sqrt{3}π$

分析 由題意,所得幾何體的表面積為一個圓柱和兩個圓錐的側(cè)面積的和,即可得出結(jié)論.

解答 解:由題意,所得幾何體的表面積為一個圓柱和兩個圓錐的側(cè)面積的和,所以S=$2π×\frac{\sqrt{3}}{2}×1$+2×$\frac{1}{2}×2π×\frac{\sqrt{3}}{2}×1$=2$\sqrt{3}π$.
故答案為:2$\sqrt{3}π$.

點評 本題考查側(cè)面積的計算,考查學(xué)生的計算能力,確定由題意,所得幾何體的表面積為一個圓柱和兩個圓錐的側(cè)面積的和是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.橢圓$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1的左焦點為F,直線x=a與橢圓相交于點M、N,當(dāng)△FMN的周長最大時,△FMN的面積是( 。
A.$\frac{\sqrt{5}}{5}$B.$\frac{6\sqrt{5}}{5}$C.$\frac{8\sqrt{5}}{5}$D.$\frac{4\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知拋物線x2=2py和$\frac{{x}^{2}}{2}$-y2=1的公切線PQ(P是PQ與拋物線的切點,未必是PQ與雙曲線的切點)與拋物線的準(zhǔn)線交于Q,F(xiàn)(0,$\frac{P}{2}$),若$\sqrt{2}$|PQ|=$\sqrt{3}$|PF|,則拋物線的方程是( 。
A.x2=4yB.x2=2$\sqrt{3}$yC.x2=6yD.x2=2$\sqrt{2}$y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知圓C:x2+y2+2x-8y+m=0與拋物線上E:y2=8x的準(zhǔn)線l相切,拋物線E上的點P到準(zhǔn)線l的距離為d,Q為圓C上任意一點,則|PQ|+d的最小值等于( 。
A.3B.2C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.高三學(xué)生小李計劃在2017年高考結(jié)束后,和其他小伙伴一塊兒進(jìn)行旅游,有3個自然風(fēng)光景點A,B,C和3個人文歷史景點a,b,c可供選擇,由于時間和距離原因,只能從中任取4個景點進(jìn)行參觀,其中景點A不能第一個參觀,且最后參觀的是人文歷史景點,則不同的旅游順序有( 。
A.54種B.72種C.120種D.144種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩焦點分別為F1,F(xiàn)2,短軸的一個端點為點P,△PF1F2內(nèi)切圓的半徑為$\frac{3}$.設(shè)過點F2的直線l被橢圓C截得的線段為RS,當(dāng)l⊥x軸時,|RS|=3
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)在x軸上是否存在一點T,使得當(dāng)l變化時,總有TS與TR所在直線關(guān)于x軸對稱?若存在,請求出點T的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.等差數(shù)列{an}中,a3+a4=4,a5+a7=6.
(Ⅰ)求{an}的通項公式;
(Ⅱ)設(shè)bn=an•5n,求{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某市為了了解全民健身運動開展的效果,選擇甲、乙兩個相似的小區(qū)作對比,一年前在甲小區(qū)利用體育彩票基金建設(shè)了健身廣場,一年后分別在兩小區(qū)采用簡單隨機(jī)抽樣的方法抽取20人作為樣本,進(jìn)行身體綜合素質(zhì)測試,測試得分分?jǐn)?shù)的莖葉圖(其中十位為莖,個們?yōu)槿~)如圖:
(1)求甲小區(qū)和乙小區(qū)的中位數(shù);
(2)身體綜合素質(zhì)測試成績在60分以上(含60)的人稱為“身體綜合素質(zhì)良好”,否則稱為“身體綜合素質(zhì)一般”.以樣本中的頻率作為概率,兩小區(qū)人口都按1000人計算,填寫下列2×2列聯(lián)表,
甲小區(qū)(有健康廣場)乙小區(qū)(無健康廣場)合計
身體綜合素質(zhì)良好350300650
身體綜合素質(zhì)一般6507001350
合計100010002000
并判斷是否有97.5%把握認(rèn)為“身體綜合素質(zhì)良好”與“小區(qū)是否建設(shè)健身廣場”有關(guān)?
P(K2>k)0.100.050.0250.010.005
k01.7063.8415.0246.6357.879
(附:k=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=x3+1,g(x)=2(log2x2-2log2x+t-4,若函數(shù)F(x)=f(g(x))-1在區(qū)間[1,2$\sqrt{2}$]上恰有兩個不同的零點,則實數(shù)t的取值范圍(  )
A.[$\frac{5}{2}$,4]B.[$\frac{5}{2}$,$\frac{9}{2}$)C.[4,$\frac{9}{2}$)D.[4,$\frac{9}{2}$]

查看答案和解析>>

同步練習(xí)冊答案