9.某工廠對某產(chǎn)品的產(chǎn)量與單位成本的資料分析后有如表數(shù)據(jù):
月     份12345
6
產(chǎn)量x千件234345
單位成本y元/件737271736968
(Ⅰ) 畫出散點圖,并判斷產(chǎn)量與單位成本是否線性相關(guān).
(Ⅱ) 求單位成本y與月產(chǎn)量x之間的線性回歸方程.(其中結(jié)果保留兩位小數(shù))
參考公式:用最小二乘法求線性回歸方程系數(shù)公式:$\widehatb$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_1^2-n{{\overline x}^2}}}}$,$\widehata$=$\overline y$-$\widehatb\overline x$.
(附:線性回歸方程$\widehaty$=$\widehatb$x+$\widehata$中,b=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)}({y_i}-\overline y)}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata$=$\overline y$-$\widehatb\overline x$,其中$\overline{x}$,$\overline{y}$為樣本平均值,$\hat b,\hat a$的值的結(jié)果保留二位小數(shù).)

分析 (Ⅰ) 根據(jù)所給的六組數(shù)據(jù)寫出六個有序數(shù)對,在平面直角坐標系上點出對應(yīng)的點,得到散點圖,觀察散點圖呈帶狀分布,知產(chǎn)量與單位成本是線性相關(guān).
(II)做出橫標和縱標的平均數(shù),得到這組數(shù)據(jù)的樣本中心點,求出利用最小二乘法所需要的數(shù)據(jù),代入關(guān)于b的公式,求出線性回歸方程的系數(shù),再求出a的值,得到方程.

解答 解:(Ⅰ) 根據(jù)所給的六組數(shù)據(jù)寫出六個有序數(shù)對,在平面直角坐標系上點出對應(yīng)的點,得到散點圖,
觀察散點圖呈帶狀分布,知產(chǎn)量與單位成本是線性相關(guān);
(Ⅱ) 已計算得:x1y1+x2y2+…+x6y6=1481,$\overline x=\frac{21}{6},\overline y=71,\sum_{i=1}^6{x_i^2}=79,\sum_{i=1}^6{{x_i}{y_i}}=1481$,
代入公式得:$b=\frac{{1481-6×\frac{21}{6}×71}}{{79-6×{{({\frac{21}{6}})}^2}}}≈-1.82,a=71-({-1.82})×\frac{21}{6}≈77.37$
故線性回歸方程為:y=77.37-1.82x.

點評 本題考查線性回歸方程的求解,本題解題的關(guān)鍵是正確求解線性回歸方程的系數(shù),這里的運算比較麻煩,容易出錯.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),過其右焦點F作圓x2+y2=a2的兩條切線,切點記作C,D,原點為O,∠COD=$\frac{π}{2}$,則雙曲線的離心率為( 。
A.$\frac{3}{2}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)集合A={x|ex>$\sqrt{e}$},集合B={x|lgx≤-lg2},則A∪B等于( 。
A.RB.[0,+∞)C.(0,+∞)D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知等差數(shù)列{an}的前n項和為Sn,且a3=5,S15=225.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)記bn=2${\;}^{{a}_{n}}$+2n,{bn}的前n項和為Tn,試比較Tn與(4n+$\frac{1}{n}$+1)Sn的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在直角坐標系xOy中,點P是單位圓上的動點,過點P作x軸的垂線與射線y=$\sqrt{3}$x(x≥0)交于點Q,與x軸交于點M.記∠MOP=α,且α∈(-$\frac{π}{2}$,$\frac{π}{2}$).
(Ⅰ)若sinα=$\frac{1}{3}$,求cos∠POQ;
(Ⅱ)求△OPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在△ABC中,AB=3,AC=$\sqrt{13}$,B=$\frac{π}{3}$,則△ABC的面積是( 。
A.$\frac{3\sqrt{3}}{4}$B.$\frac{3\sqrt{3}}{2}$C.2$\sqrt{3}$D.3$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知變量x,y滿足$\left\{\begin{array}{l}{0≤x≤3}\\{x+y≥0}\\{x-y+3≥0}\end{array}\right.$則z=2x-3y的最大值為15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是( 。
A.$\frac{2014}{2015}$B.$\frac{2015}{2016}$C.$\frac{2016}{2017}$D.$\frac{2017}{2018}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=ax2+xlnx(a∈R)的圖象在點(1,f(1))處的切線與直線x+3y=0垂直.
(Ⅰ)求實數(shù)a的值;
(Ⅱ)若存在k∈Z,使得f(x)>k恒成立,求k的最大值.

查看答案和解析>>

同步練習(xí)冊答案