在湖面上高為10m處測(cè)得天空中一朵云的仰角為30°,測(cè)得湖中之影的俯角為45°,則云距湖面的高度為
 
(精確到0.1m)
考點(diǎn):解三角形的實(shí)際應(yīng)用
專(zhuān)題:計(jì)算題,解三角形
分析:作出示意圖,則
CM-10
tan30°
=
CM+10
tan45°
,求出CM,即可得出云距湖面的高度.
解答: 解:依題意畫(huà)出示意圖,
CM-10
tan30°
=
CM+10
tan45°
,
∴CM=
tan45°+tan30°
tan45°-tan30°
×10≈37.3(m).
故答案為:37.3m.
點(diǎn)評(píng):本題考查解三角形的實(shí)際應(yīng)用,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)O在△ABC內(nèi),且滿足向量
OA
+2
OB
+2
OC
=
0
,則△AOB與△AOC的面積之比是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=sinx+cosx在(π,3π)上的單調(diào)遞增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)雙曲線
x2
4
-
y2
2
=1的左焦點(diǎn)F1的直線與雙曲線的左,右兩支分別交于點(diǎn)N,M,F(xiàn)2為其右焦點(diǎn),則|MN|+|NF2|-|MF2|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-x+alnx(x≥1),當(dāng)a<-1時(shí),則f(x)的單調(diào)區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)盒子里裝有完全相同的八個(gè)小球,分別標(biāo)上1,2,3,…,8這8個(gè)數(shù)字,現(xiàn)隨機(jī)地抽取兩個(gè)小球,根據(jù)下列條件求兩個(gè)小球上數(shù)字為相鄰整數(shù)的概率.
(1)小球是不放回的;
(2)小球是有放回的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)是奇函數(shù),且f(x+1)=-f(x),當(dāng)x∈(-1,0)時(shí),f(x)=2x+1,求f(
9
2
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD是菱形,PA⊥平面ABCD,M為PA的中點(diǎn).
(1)求證:PC∥平面BDM;
(2)若PA=AC=
2
,BD=2
3
,求直線BM與平面PAC所成的角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸的負(fù)半軸上,過(guò)其上一點(diǎn)P(x0,y0)(x0≠0)的切線方程為y-y0=2ax0(x-x0) (a為常數(shù)).
(1)求拋物線方程;
(2)斜率為k1的直線PA與拋物線的另一交點(diǎn)為A,斜率為k2的直線PB與拋物線的另一交點(diǎn)為B(A、B兩點(diǎn)不同),且滿足k2+λk1=0(λ≠0,λ=-1),若
BM
MA
,求證:線段PM的中點(diǎn)在y軸上;
(3)在(2)的條件下,當(dāng)λ=1,k1<0時(shí),若點(diǎn)P的坐標(biāo)為(1,-1),求:∠PAB為鈍角時(shí),點(diǎn)A的縱坐標(biāo)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案