7.已知集合A={x|$\frac{x-3}{x+1}$≥0},B={x|log2x<2},則(∁RA)∩B=(0,3).

分析 求出A與B中不等式的解集確定出A與B,找出A補(bǔ)集與B的交集即可.

解答 解:由A中不等式解得:x<-1或x≥3,即A=(-∞,-1)∪[3,+∞),
∴∁RA=[-1,3),
由B中不等式變形得:log2x<2=log24,即0<x<4,即B=(0,4),
則(∁RA)∩B=(0,3),
故答案為:(0,3)

點(diǎn)評 此題考查了交、并、補(bǔ)集的混合運(yùn)算,熟練掌握各自的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在三角形ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,若b-c=$\frac{1}{3}$a,sinB=2sinA,則tan(B+C)=$-\frac{2\sqrt{14}}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若$0≤θ≤\frac{π}{2}$,當(dāng)點(diǎn)(1,cosθ)到直線xsinθ+ycosθ-1=0的距離是$\frac{1}{4}$時,這條直線的斜率是( 。
A.$\frac{\sqrt{3}}{2}$B.-1C.$\frac{\sqrt{3}}{3}$D.-$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知圓錐的底面半徑為3,側(cè)面積為15π,則圓錐的體積等于12π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)x(單位:千克)對年消售量y(單位:t)和年利潤z(單位:千克)的影響,對近8年的宣傳費(fèi)xi和年銷售量yi(i=1,2,3,..8)數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
$\overline{x}$$\overline{y}$$\overline{w}$$\sum_{i=1}^{8}$(xi-$\overline{x}$)2 $\sum_{i=1}^{8}$(wi-$\overline{w}$)2$\sum_{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$)$\sum_{i=}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$)
46.65636.8289.81.61469108.8
表中:wi=$\sqrt{{x}_{i}}$$\overline{w}$=$\frac{1}{8}$$\sum_{i=1}^{8}$wi
(Ⅰ)根據(jù)散點(diǎn)圖判斷,y=a+bx與y=c+d $\sqrt{x}$,哪一個適宜作為年銷售量y關(guān)于年宣傳費(fèi)x的回歸方程類型(給出判斷即可,不必說明理由);
(Ⅱ)根據(jù)(I)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(Ⅲ)已知這種產(chǎn)品的年利潤z與x,y的關(guān)系為z=0.2y-x,根據(jù)(II)的結(jié)果回答下列問題:
(i)當(dāng)年宣傳費(fèi)x=49時,年銷售量及年利潤的預(yù)報值時多少?
(ii)當(dāng)年宣傳費(fèi)x為何值時,年利潤的預(yù)報值最大?并求出最大值
附:對于一組數(shù)據(jù)(u1,v1),(u2,v2)…..(un,vn),其回歸線$\widehat{v}$=α+βu的斜率和截距的最小二乘估計(jì)分別為:β=$\frac{\sum_{i=1}^{n}({u}_{1}-\overline{u})({v}_{1}-\overline{v})}{\sum_{i=1}^{n}({u}_{1}-\overline{u})^{2}}$,α=$\overline{v}$-β$\overline{u}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列角中與$\frac{π}{5}$終邊相同的是( 。
A.$\frac{18π}{5}$B.$\frac{24π}{5}$C.$\frac{21π}{5}$D.$-\frac{41π}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知a,b∈R,則a>b的充分不必要條件是( 。
A.a2>b2B.${({\frac{1}{3}})^a}<{({\frac{1}{3}})^b}$C.lg(a-b)>1D.$\frac{a}<1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)經(jīng)過拋物線y2=8x焦點(diǎn)F的直線l與拋物線交于A,B兩點(diǎn),若AB中點(diǎn)M到拋物線準(zhǔn)線的距離為8,則l的斜率為±1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在算式“30-△=4×□”中的△,□分別填入兩個正整數(shù),使它們的倒數(shù)和最小,則這兩個數(shù)構(gòu)成的數(shù)對(△,□)應(yīng)為( 。
A.(4,14)B.(6,6)C.(3,18)D.(10,5)

查看答案和解析>>

同步練習(xí)冊答案