【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)將的方程化為普通方程,將的方程化為直角坐標(biāo)方程;
(Ⅱ)已知直線的參數(shù)方程為,為參數(shù),且,與交于點(diǎn),與交于點(diǎn),且,求的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程及曲線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn),直線與曲線相交于兩點(diǎn),,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】研究機(jī)構(gòu)對(duì)某校學(xué)生往返校時(shí)間的統(tǒng)計(jì)資料表明:該校學(xué)生居住地到學(xué)校的距離(單位:千米)和學(xué)生花費(fèi)在上學(xué)路上的時(shí)間(單位:分鐘)有如下的統(tǒng)計(jì)資料:
到學(xué)校的距離(千米) | 1.8 | 2.6 | 3.1 | 4.3 | 5.5 | 6.1 |
花費(fèi)的時(shí)間(分鐘) | 17.8 | 19.6 | 27.5 | 31.3 | 36.0 | 43.2 |
如果統(tǒng)計(jì)資料表明與有線性相關(guān)關(guān)系,試求:
(1)判斷與是否有很強(qiáng)的線性相關(guān)性?
(相關(guān)系數(shù)的絕對(duì)值大于0.75時(shí),認(rèn)為兩個(gè)變量有很強(qiáng)的線性相關(guān)性,精確到0.01)
(2)求線性回歸方程(精確到0.01);
(3)將分鐘的時(shí)間數(shù)據(jù)稱為美麗數(shù)據(jù),現(xiàn)從這6個(gè)時(shí)間數(shù)據(jù)中任取2個(gè),求抽取的2個(gè)數(shù)據(jù)全部為美麗數(shù)據(jù)的概率.
參考數(shù)據(jù):,,,,
,
參考公式:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在幾何體中,平面底面ABC,四邊形是正方形,,Q是的中點(diǎn),且,.
求證:平面;
求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】圓錐如圖①所示,圖②是它的正(主)視圖.已知圓的直徑為, 是圓周上異于的一點(diǎn), 為的中點(diǎn).
(I)求該圓錐的側(cè)面積S;
(II)求證:平面⊥平面;
(III)若∠CAB=60°,在三棱錐中,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,B為AC的中點(diǎn),分別以AB,AC為直徑在AC的同側(cè)作半圓,M,N分別為兩半圓上的動(dòng)點(diǎn)不含端點(diǎn)A,B,,且,則的最大值為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知變量、之間的線性回歸方程為,且變量、之間的一-組相關(guān)數(shù)據(jù)如下表所示,則下列說(shuō)法錯(cuò)誤的是( )
A.可以預(yù)測(cè),當(dāng)時(shí),B.
C.變量之間呈負(fù)相關(guān)關(guān)系D.該回歸直線必過(guò)點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某人工景觀湖外圍有兩條相互垂直的直線型公路ll,l2,且ll和l2交于點(diǎn)O.為了方便游客游覽,計(jì)劃修建一條連接公路與景觀湖的直線型公路AB.景觀湖的輪廓可以近似看成一個(gè)圓心為O,半徑為2百米的圓,且公路AB與圓O相切,圓心O到ll,l2的距離均為5百米,設(shè)OAB=,AB長(zhǎng)為L百米.
(1)求L關(guān)于的函數(shù)解析式;
(2)當(dāng)為何值時(shí),公路AB的長(zhǎng)度最短?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:x2+mx+1=0有兩個(gè)不等的負(fù)根;命題q:4x2+4(m﹣2)x+1=0無(wú)實(shí)根.若命題p與命題q有且只有一個(gè)為真,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com