分析 (Ⅰ)證明QD⊥平面BCD,得到QD⊥DC,QB⊥BC,證明M是BD的中點.然后證明PM⊥BD.
(Ⅱ)設點D到平面QMN的距離為h,利用等體積法,轉化求解點D到平面QMN的距離.
解答 解:(Ⅰ)∵平面QBD⊥平面BCD,QD⊥BD,
平面QBD∩平面BCD=BD,
∴QD⊥平面BCD,∴QD⊥DC,
同理QB⊥BC,…(3分)
∵P是QC的中點.
∴$DP=BP=\frac{1}{2}QC$,又M是DB的中點
∴PM⊥BD.…(6分)
(Ⅱ)∵QD⊥平面BCD,QD=BC=2,AB=4,M,N,P分別是DB、BC、QC的中點.
∴$QM=2\sqrt{2},MN=\sqrt{5},QN=\sqrt{21}$
∴${S_{△QMN}}=\sqrt{6}$
又S△MND=1,…(9分)
設點D到平面QMN的距離為h
∵${V_{Q-MND}}={V_{D-QMN}}∴\frac{1}{3}•1•2=\frac{1}{3}•\sqrt{6}•h$.
所以點D到平面QMN的距離$\frac{{\sqrt{6}}}{3}$.…(12分)
點評 本題考查的平面距離的求法,等體積法的應用,直線與直線垂直,直線與平面垂直的判斷與性質,考查空間想象能力以及計算能力,轉化思想的應用.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3π | B. | 9π | C. | $\frac{9π}{2}$ | D. | $\frac{7π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com