15.已知M是球O的直徑CD上的一點(diǎn),CM=$\frac{1}{2}$MD,CD⊥平面α,M為垂足,α截球O所得截面的面積為π,則球O的表面積為( 。
A.B.C.$\frac{9π}{2}$D.$\frac{7π}{2}$

分析 設(shè)球的半徑為R,根據(jù)題意知由與球心距離為$\frac{1}{3}$R的平面截球所得的截面圓的面積是π,我們易求出截面圓的半徑為1,根據(jù)球心距、截面圓半徑、球半徑構(gòu)成直角三角形,滿足勾股定理,我們易求出該球的半徑,進(jìn)而求出球的表面積.

解答 解:設(shè)球的半徑為R,∵CM=$\frac{1}{2}$MD,∴平面α與球心的距離為$\frac{1}{3}$R,
∵α截球O所得截面的面積為π,
∴d=$\frac{1}{3}$R時(shí),r=1,
故由R2=r2+d2得R2=12+($\frac{1}{3}$R)2,∴R2=$\frac{9}{8}$
∴球的表面積S=4πR2=$\frac{9}{2}$π.
故選:C.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是球的表面積公式,若球的截面圓半徑為r,球心距為d,球半徑為R,則球心距、截面圓半徑、球半徑構(gòu)成直角三角形,滿足勾股定理.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an},{bn},Sn為數(shù)列{an}的前n項(xiàng)和,向量$\overrightarrow{x}$=(1,bn),$\overrightarrow{y}$=(an-1,Sn),$\overrightarrow{x}$∥$\overrightarrow{y}$.
(1)若bn=2,求數(shù)列{an}通項(xiàng)公式;
(2)若bn=$\frac{n}{2}$,a2=0.
①證明:數(shù)列{an}為等差數(shù)列;
②設(shè)數(shù)列{cn}滿足cn=$\frac{{{a_{n+3}}}}{{{a_{n+2}}}}$,問是否存在正整數(shù)l,m(l<m,且l≠2,m≠2),使得cl、c2、cm成等比數(shù)列,若存在,求出l、m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.作出下面函數(shù)的圖象,并根據(jù)圖象寫出單調(diào)區(qū)間.
(1)y=|x2-1|;
(2)y=-x2+2|x|-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.模擬考試后,某校對(duì)甲、乙兩個(gè)班的數(shù)學(xué)考試成績(jī)進(jìn)行分析,規(guī)定:不少于120分為優(yōu)秀,否則為非優(yōu)秀,統(tǒng)計(jì)成績(jī)后,得到如下的2×2列聯(lián)表,已知在甲、乙兩個(gè)班全部100人中隨機(jī)抽取1人為優(yōu)秀的概率為$\frac{3}{10}$.
優(yōu)秀非優(yōu)秀合計(jì)
甲班203050
乙班104050
合計(jì)3070100
(1)請(qǐng)完成上面的2×2列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按97.5%的可靠性要求,能否認(rèn)為“成績(jī)與班級(jí)有關(guān)系”?
(3)在“優(yōu)秀”的學(xué)生人中,用分層抽樣的方法抽取6人,再平均分成兩組進(jìn)行深入交流,求第一組中甲班學(xué)生人數(shù)ξ的分布列和數(shù)學(xué)期望.
參考公式與臨界值表:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在平行四邊形ABCD中,AD⊥BD,AD=2,BD=4,點(diǎn)M、N分別為BD、BC的中點(diǎn),將其沿對(duì)角線BD折起成四面體QBCD,使平面QBD⊥平面BCD,P為QC的中點(diǎn).

(1)求證:PM⊥BD;
(2)求點(diǎn)D到平面QMN的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在三棱錐S-ABC中,側(cè)棱SC⊥平面SAB,SA⊥BC,側(cè)面△SAB,△SBC,△SAC的面積分別為1,$\frac{3}{2}$,3,則此三棱錐的外接球的表面積為(  )
A.14πB.12πC.10πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)一個(gè)球形西瓜,切下一刀后所得切面圓的半徑為4,球心到切面圓心的距離為3,則該西瓜的體積為( 。
A.100πB.$\frac{256}{3}$πC.$\frac{100}{3}$πD.$\frac{500}{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在等比數(shù)列{an}中,若a1=3,a4=24,則的q值為(  )
A.8B.7C.2$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)y=$\sqrt{x}$+$\sqrt{3-3x}$的值域?yàn)椋ā 。?table class="qanwser">A.[0,3]B.[1,2]C.[0,$\sqrt{3}$]D.[$\frac{{1-\sqrt{5}}}{2}$,$\frac{{1+\sqrt{5}}}{2}$]

查看答案和解析>>

同步練習(xí)冊(cè)答案