分析 (1)根據(jù)系數(shù)相等,求出a,b,c的值,從而求出f(x)的表達(dá)式即可;(2)先求出函數(shù)的對稱軸,得到f(x)的單調(diào)性,從而求出f(x)的值域即可.
解答 解:(1)由f(2x-1)=a(2x-1)2+b(2x-1)+c=4ax2+(2b-4a)x+a-b+c=4x2+6x-1,
∴$\left\{\begin{array}{l}{4a=4}\\{2b-4a=6}\\{a-b+c=-1}\end{array}\right.$,解得:a=1,b=5,c=3,
∴f(x)=x2+5x+3;
(2)∵f(x)=x2+5x+3的對稱軸是x=-$\frac{5}{2}$,
∴f(x)在[-1,2]遞增,
由f(-1)=-1,f(2)=17,
∴f(x)∈[-1,17].
點(diǎn)評 本題考察了二次函數(shù)的性質(zhì),考察函數(shù)的單調(diào)性最值問題,是一道基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | $\frac{14}{5}$ | C. | 7 | D. | 14 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com