14.已知奇函數(shù)f(x),偶函數(shù)g(x)滿足f(x)+g(x)=ax(a>0且a≠1).
(1)求證:f(2x)=2f(x)•g(x);
(2)設(shè)f(x)的反函數(shù)是f-1(x),當(dāng)a=$\sqrt{2}-1$時(shí),試比較f-1[g(x)]與-1的大小,并證明你的結(jié)論.

分析 (1)以-x代x得f(-x)=g(-x)+a-x再根據(jù)函數(shù)的奇偶性進(jìn)行化簡,得到關(guān)于f(x)與g(x)的方程組,解之即可求出函數(shù)f(x)的解析式,從而證得f(2x)=2f(x)g(x);
(2)根據(jù)互為反函數(shù)的單調(diào)性的關(guān)系可得出y=f-1(x)是R上的減函數(shù),再將-1代入,可求出f(-1)的值,結(jié)合反函數(shù)的單調(diào)性比較大小即得;

解答 證明:(1)∵f(x)+g(x)=ax,
∴f(-x)+g(-x)=a-x
∵f(x)是奇函數(shù),g(x)是偶函數(shù),
∴-f(x)+g(x)=a-x,
∴f(x)=$\frac{1}{2}$(ax-a-x),g(x)=$\frac{1}{2}$(ax+a-x).
∴f(x)g(x)=$\frac{1}{2}$(ax-a-x)•$\frac{1}{2}$(ax+a-x)=$\frac{1}{4}$(a2x-a-2x)=$\frac{1}{2}$f(2x),即f(2x)=2f(x)g(x).
(2)0<a=$\sqrt{2}-1$<1,
∴f(x)=$\frac{1}{2}$(ax-a-x)是R上的減函數(shù),
∴y=f-1(x)是R上的減函數(shù),
又∵f(-1)=$\frac{1}{2}$($\frac{1}{\sqrt{2}-1}$$-\sqrt{2}$+1)=1,
∴g(x)=$\frac{1}{2}$(ax+a-x)≥$\frac{1}{2}$×2$\sqrt{{a}^{x}•{a}^{-x}}$=1=f(-1),
∴f-1[g(x)]≤-1.

點(diǎn)評(píng) 本小題主要考查函數(shù)單調(diào)性的應(yīng)用、函數(shù)奇偶性的應(yīng)用、函數(shù)與方程的綜合運(yùn)用等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,根據(jù)函數(shù)的奇偶性與題設(shè)中所給的解析式求出兩個(gè)函數(shù)的解析式,此是函數(shù)奇偶性運(yùn)用的一個(gè)技巧.屬于中檔題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若函數(shù)f(x2-1)的定義域?yàn)閇0,3],則f(log2x)的定義域?yàn)?[\frac{1}{2},256]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知邊長為2的正方形SG₁G₂G₃,E,F(xiàn)分別是G₁G₂,G₂G₃的中點(diǎn),SG₂交EF于點(diǎn)D,現(xiàn)沿著線段SE,SF,EF翻折成四面體,使G₁,G₂,G₃重合于點(diǎn)G,則四面體S-EFG中有:(A)SD⊥平面EFG;(B)SG⊥平面EFG;(C)GF⊥平面SGF;(D)GD⊥平面SEF.
(1)畫出四面體的草圖,并在(A)(B)(C)(D)四個(gè)結(jié)論中選擇你認(rèn)為正確的結(jié)論,加以證明;
(2)求四面體S-EFG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知定義在R上的連續(xù)函數(shù)f(x)滿足f(0)=f(1).
(1)若f(x)=ax2+x,解不等式$\left|{f(x)}\right|<ax+\frac{3}{4}$;
(2)若任意x1,x2∈[0,1]且x1≠x2時(shí),有|f(x1)-f(x2)|<|x1-x2|,求證:$\left|{f({x_1})-f({x_2})}\right|<\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知數(shù)列{an}的前n項(xiàng)的和為Sn,a1=-1,a2=2,滿足Sn+1=3Sn-2Sn-1-an-1+2(n≥2),則a2016=20162-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.定義min{a,b}=$\left\{\begin{array}{l}{x,(x<y)}\\{y,(x≥y)}\end{array}\right.$,則不等式min{x+$\frac{4}{x}$,4}≥8min{x,$\frac{1}{x}$}的解集是$(-∞,0)∪(0,\frac{1}{2}]∪[2,∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在某一溫度下,直徑為0.2m,高為0.8m上端為活塞的圓柱體內(nèi)某氣體的壓強(qiáng)p(N/m2)與體積V(m3)的函數(shù)關(guān)系式為p=$\frac{80}{V}$,而正壓力F(N)與壓強(qiáng)p(N/m2)的函數(shù)關(guān)系為F=pS,其中S(m2)為受力面積.設(shè)溫度保持不變,要使氣體的體積縮小為原來的一半.求活塞克服氣體壓力做多少功?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知l為雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的一條漸近線,其傾斜角為$\frac{π}{4}$,且C的右焦點(diǎn)為(2,0),則C的右頂點(diǎn)為($\sqrt{2}$,0),C的方程為$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{2}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中,求證:$\frac{{a}^{2}-^{2}}{{c}^{2}}$=$\frac{sin(A-B)}{sinC}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案