分析 (Ⅰ)在AC上任取一點(diǎn)E,使AE=$\frac{1}{4}AC$,則DE∥SA只需證明DE⊥AC.BE⊥AC,即可得AC⊥面BDE,AC⊥BD.
(Ⅱ)過E作EF⊥SC于F,連接BF,則SC⊥面BEF,可得EFB為二面角A-SC-B的平面角,在Rt△BEF中,cos$∠EFB=\frac{EF}{BF}=\frac{\sqrt{6}}{4}$.可得二面角A-SC-B的余弦值.
解答 解:(Ⅰ)在AC上任取一點(diǎn)E,使AE=$\frac{1}{4}AC$,則DE∥SA
∵SA⊥底面ABC,∴DE⊥底面ABC,∴DE⊥AC.
在△ABE,AE=$\frac{1}{2}a$,AB=a,∠BAC=60°,
由余弦定理得BE=$\sqrt{{a}^{2}+(\frac{1}{2}a)^{2}-2a•\frac{1}{2}acos6{0}^{0}}=\frac{\sqrt{3}}{2}a$
∵AB2=AE2+BE2,∴BE⊥AC
∴AC⊥面BDE,AC⊥BD.
(Ⅱ)∵SA⊥底面ABC,SA?底面ABC,∴平面SAC⊥底面ABC.
由(Ⅰ)知BE⊥AC,∴BE⊥面SAC,BE⊥SC,
過E作EF⊥SC于F,連接BF,則SC⊥面BEF,∴SC⊥BF
∵EF⊥SC,BF⊥SC,∴∠EFB為二面角A-SC-B的平面角.
∵Rt△SAC∽Rt△EFC,∴$\frac{SA}{EF}=\frac{SC}{EC},即\frac{a}{EF}=\frac{\sqrt{5}a}{\frac{3}{2}a}$,∴$EF=\frac{3a}{2\sqrt{5}}$.
又∵BE=$\frac{\sqrt{3}}{2}a$,∴BF=$\sqrt{B{E}^{2}+E{F}^{2}}=\sqrt{\frac{3}{4}{a}^{2}+\frac{9}{20}{a}^{2}}=\frac{\sqrt{30}}{5}a$.
在Rt△BEF中,cos$∠EFB=\frac{EF}{BF}=\frac{\sqrt{6}}{4}$.
∴二面角A-SC-B的余弦值為$\frac{\sqrt{6}}{4}$
點(diǎn)評 本題考查了空間直線與直線的位置關(guān)系,考查了幾何法求二面角,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | |a|>|b| | B. | a2>ab | C. | $\frac{1}{a}>\frac{1}$ | D. | $\frac{1}{a-b}>\frac{1}{a}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\{m|-\frac{1}{4}<m<0\}$ | B. | {m|m>4} | C. | {m|0<m<4} | D. | $\{m|-\frac{1}{4}<m<0或m>4\}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=x2-x | B. | y=x+2sin x | C. | y=x3+x | D. | y=tan x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com