15.在等差數(shù)列{an}中,Sn為{an}的前n項(xiàng)和,若S11=11,則a6=( 。
A.1B.3C.6D.9

分析 利用等差數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式及其性質(zhì)即可得出.

解答 解:由等差數(shù)列的性質(zhì)可得:S11=11=$\frac{11({a}_{1}+{a}_{11})}{2}$=11a6,解得a6=1.
故選:A.

點(diǎn)評 本題考查了等差數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.某人在同一條件下射靶50次,其中射中5環(huán)或5環(huán)以下2次,射中6環(huán)3次,射中7環(huán)9次,射中8環(huán)21次,射中9環(huán)11次,射中10環(huán)4次,該射擊者射中7環(huán)∽9環(huán)的概率是$\frac{41}{50}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.?dāng)?shù)列{an}和{bn}滿足:對任意自然數(shù)n,an,bn,an+1成等差數(shù)列,bn,an+1,bn+1成等比數(shù)列,且b5=196,b7=400.?dāng)?shù)列{cn}的前n項(xiàng)和為Sn,且cn=2-2Sn(n∈N*
(1)求證:數(shù)列{$\sqrt{_{n}}$}為等差數(shù)列;
(2)求數(shù)列{bn},{cn}的通項(xiàng)公式;
(3)數(shù)列{$\sqrt{_{n}}$•cn}的前n項(xiàng)和為Tn,求證:Tn<$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓C1:$\frac{{x}^{2}}{100}$+$\frac{{y}^{2}}{64}$=1,設(shè)橢圓C2與橢圓C1的長軸長、短軸長分別相等,且橢圓C2的焦點(diǎn)在y軸上.
(1)求橢圓C1的長半軸長、短半軸長、焦點(diǎn)坐標(biāo)及離心率;
(2)寫出橢圓C2的方程,并研究其性質(zhì).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.計(jì)算2A${\;}_{5}^{3}$-${A}_{6}^{2}$=90.(請用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.?dāng)?shù)列{an}中,an+1=$\frac{a_n}{{2+{a_n}}}$對所有正整數(shù)n都成立,且a1=1,則an=$\frac{1}{{2}^{n}-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知等差數(shù)列{an}一共有12項(xiàng),其中奇數(shù)項(xiàng)之和為22,偶數(shù)項(xiàng)之和為34,則公差為(  )
A.12B.5C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知二面角α-l-β的大小為120°,AB垂直于平面β交l于點(diǎn)B,動(dòng)點(diǎn)C滿足AC與AB的夾角為30°,則點(diǎn)C在平面α和平面β上的軌跡分別是(  )
A.雙曲線、圓B.雙曲線、橢圓C.拋物線、圓D.橢圓、圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.用1、2、3、4、5五個(gè)數(shù)字排一個(gè)沒有重復(fù)數(shù)字的五位數(shù),求以下問題所有不同的排法總數(shù)(答案用數(shù)字作答):
(1)兩個(gè)偶數(shù)不能相鄰,而三個(gè)奇數(shù)必須相鄰;
(2)偶數(shù)不能排在偶數(shù)位置上;
(3)排出的所有五位數(shù)中比34512大的有多少.

查看答案和解析>>

同步練習(xí)冊答案