4.設x,y滿足約束條件$\left\{{\begin{array}{l}{x-y≥-1}\\{x+y≤3}\\{x≥0,y≥0}\end{array}}\right.$,則z=x-2y的最大值是3.

分析 作出不等式組對應的平面區(qū)域,利用目標函數(shù)z=x-2y中,z的幾何意義,通過直線平移即可得到z的最大值;

解答 解:(1)作出不等式組對應的平面區(qū)域如圖:
由z=x-2y,得y=$\frac{1}{2}x-\frac{z}{2}$,
平移直線y=$\frac{1}{2}x-\frac{z}{2}$,當直線y=$\frac{1}{2}x-\frac{z}{2}$經(jīng)過點A(3,0)時,直線的截距最小,此時z最大,
此時z的最大值為z=3-2×0=3.
故答案為:3.

點評 本題主要考查線性規(guī)劃的應用,利用z的幾何意義,通過數(shù)形結合是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

15.下列函數(shù)中,不是偶函數(shù)的是(  )
A.y=1-x2B.y=3x+3-xC.y=cos2xD.y=tanx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.在式子$\widehat{a}$=$\widehat{y}$-$\widehat$$\overline{x}$中,($\overline{x}$,$\overline{y}$)稱為樣本點中心;殘差$\widehat{{e}_{i}}$=$\widehat{{y}_{i}}$-yi

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.設z1=1+i,z2=-2+2i,復數(shù)z1和z2在復平面內(nèi)對應點分別為A、B,O為坐標原點,則△AOB的面積為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知a,b∈R+,那么“l(fā)og${\;}_{\frac{1}{2}}$a>log${\;}_{\frac{1}{2}}$b”是“a<b”的(  )
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.(1)已知復數(shù)z1滿足(z1-2)(1+i)=1-i(i為虛數(shù)單位),復數(shù)z2的虛部為2,且z1•z2是實數(shù),求z2
(2)已知x>0,y>0,x≠y,試比較$\frac{1}{x}+\frac{1}{y}$與$\frac{4}{x+y}$的大小,并用分析法證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.(1)已知z1,z2∈C,若|z1|=5,z2=3+4i,z1•$\overline{z_2}$是純虛數(shù),求z1
(2)在平行四邊形ABCD中,點A,B,C分別對應復數(shù)2+i,4+3i,3+5i,求點D對應的復數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在直三棱柱ABC-A1B1C1中,AB=AC=AA1=3a,BC=2a,D是BC的中點,E,F(xiàn)分別是A1A,C1C上一點,且AE=CF=2a.
(1)求證:B1F⊥平面ADF;
(2)求證:BE∥平面ADF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.給出以下四個命題,其中真命題的序號為①④.
①若命題p:“?x∈R,使得x2+x+1<0”,則?p:“?x∈R,均有x2+x+1≥0”;
②線性相關系數(shù)r越大,兩個變量的線性相關性越強;反之,線性相關性越弱;
③用相關指數(shù)R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好;
④若x,y滿足x2+y2+xy=1,則x+y的最大值為$\frac{{2\sqrt{3}}}{3}$.

查看答案和解析>>

同步練習冊答案