13.在直三棱柱ABC-A1B1C1中,AB=AC=AA1=3a,BC=2a,D是BC的中點,E,F(xiàn)分別是A1A,C1C上一點,且AE=CF=2a.
(1)求證:B1F⊥平面ADF;
(2)求證:BE∥平面ADF.

分析 (1)通過證明AD⊥平面B1BCC1得出AD⊥B1F,通過Rt△DCF≌Rt△FC1B1得出B1F⊥FD,從而B1F⊥平面ADF;
(2)連EF,EC,設(shè)EC∩AF=M,連DM,利用中位線定理得出BE∥DM,從而有BE∥平面ADF.

解答 證明:(1)∵AB=AC,D為BC中點,∴AD⊥BC.
∵B1B⊥底面ABC,AD?底面ABC,
∴AD⊥B1B.又BC∩B1B=B,BC,B1B?平面B1BCC1,
∴AD⊥平面B1BCC1.∵B1F?平面B1BCC1,
∴AD⊥B1F.
在矩形B1BCC1中,∵C1F=CD=a,B1C1=CF=2a,
∴Rt△DCF≌Rt△FC1B1
∴∠CFD=∠C1B1F.∴∠B1FD=90°.∴B1F⊥FD.
又∵AD∩FD=D,AD,F(xiàn)D?平面AFD,
∴B1F⊥平面AFD.
(2)連EF,EC,設(shè)EC∩AF=M,連DM,
∵AE=CF=2a,AE∥CF,
∴四邊形AEFC為平行四邊形,
∴M為EC中點.又D為BC中點,
∴MD∥BE.又MD?平面ADF,BE?平面ADF,
∴BE∥平面ADF.

點評 本題考查了線面平行,線面垂直的判定,熟練掌握判定定理,構(gòu)造平行線或垂線是證明的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列函數(shù),圖象關(guān)于原點對稱的是( 。
A.f(x)=lgxB.f(x)=3xC.f(x)=lg(x+$\sqrt{1+{x}^{2}}$)D.f(x)=x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)x,y滿足約束條件$\left\{{\begin{array}{l}{x-y≥-1}\\{x+y≤3}\\{x≥0,y≥0}\end{array}}\right.$,則z=x-2y的最大值是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在等差數(shù)列{an}中,a3+a11=8,數(shù)列{bn}是等比數(shù)列,且b7=a7,則b6•b8的值為( 。
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.為預(yù)防某種流感病毒爆發(fā),某生物技術(shù)公司研制出一種新流感疫苗,為測試該疫苗的有效性(若疫苗有效的概率小于90%,則認(rèn)為測試沒有通過),公司選定2000個流感樣本分成三組,測試結(jié)果如表:
 A組B組C組
疫苗有效673xy
疫苗無效7790Z
已知在全體樣本中隨機(jī)抽取1個,抽到B組疫苗有效的概率是0.33.
(1)求x的值;
(2)現(xiàn)用分層抽樣的方法在全體樣本中抽取360個測試結(jié)果,問應(yīng)在C組抽取多少個?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知向量$\overrightarrow a$•($\overrightarrow a$+2$\overrightarrow b$)=0,|${\overrightarrow a}$|=|${\overrightarrow b}$|=1,且|${\overrightarrow c$-$\overrightarrow a$-2$\overrightarrow b}$|=1,則|${\overrightarrow c}$|的最大值為( 。
A.2B.4C.$\sqrt{5}$+1D.$\sqrt{3}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若集合A={1,2},B={1,3},則集合A∪B=( 。
A.B.{1}C.{1,2,3}D.{x|1≤x≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知實數(shù)a,b,c成等比數(shù)列,若a,x,b和b,y,c都成等差數(shù)列,則$\frac{a}{x}$+$\frac{c}{y}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若函數(shù)g(x)=x-ln(x+m)的值域是[2,+∞),則實數(shù)m的值為( 。
A.-2B.-1C.0D.4

查看答案和解析>>

同步練習(xí)冊答案