分析 (1)取BD中點(diǎn)O,連接OE,求出∠CBE=∠EBO,∠OEB=∠EBO,推出∠OEB=∠CBE,推出OE∥BC,求出OE⊥AC,根據(jù)切線的判定推出即可;
(2)設(shè)⊙O半徑為R,在Rt△AOE中,由勾股定理得出(R+2$\sqrt{6}$)2=R2+(6$\sqrt{2}$)2,求出R=2$\sqrt{6}$,求出∠A=30°,∠CBE=∠OBE=30°,推出EC=$\frac{1}{2}$BE=$\frac{1}{2}×\sqrt{3}$R,代入求出即可.
解答 (1)證明:由DE⊥BE得:BD是△BDE的外接圓的直徑
取BD中點(diǎn)O,連結(jié)OE,則O是△BDE的外接圓的圓心,
∴OB=OE,∴∠OBE=∠BEO(2分)
又BE平分∠ABC,∴∠OBE=∠CBE
∠BEO=∠CBE,故OE∥BC(4分)
因此OE⊥AC,∴AC是△BDE的外接圓的切線.(6分)
(2)解:設(shè)⊙O半徑為R,
則在Rt△AOE中,由勾股定理得:OA2=AE2+OE2,
即(R+2$\sqrt{6}$)2=R2+(6$\sqrt{2}$)2,
解得:R=2$\sqrt{6}$,
∴OA=2OE,
∴∠A=30°,∠AOE=60°,
∴∠CBE=∠OBE=30°,
∴EC=$\frac{1}{2}$BE=$\frac{1}{2}×\sqrt{3}$R=3$\sqrt{2}$.(10分).
點(diǎn)評 本題考查了切線的判定,平行線的性質(zhì)和判定,勾股定理,含30度角的直角三角形的性質(zhì)的應(yīng)用,主要考查學(xué)生綜合運(yùn)用性質(zhì)進(jìn)行推理和計(jì)算的能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | e-$\frac{1}{2}$ | B. | 1 | C. | $\sqrt{e}$-$\frac{3}{8}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [2,+∞) | B. | (0,1) | C. | [2,3) | D. | (2,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第44行81列 | B. | 第45行80列 | C. | 第44行80列 | D. | 第45行81列 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com