分析 ①根據(jù)分子常數(shù)化,結(jié)合圖象的平移得出結(jié)論;
②根據(jù)向量的概念判斷即可;
③根據(jù)函數(shù)圖象的平移和放縮得出結(jié)論;
④根據(jù)導(dǎo)函數(shù)的概念判斷即可.
解答 解:①函數(shù)f(x)=$\frac{2x+1}{x-2}$=2+$\frac{5}{x-2}$,根據(jù)圖象的平移可知對(duì)稱中心為(2,2),故正確;
②向量$\overrightarrow a$,$\overrightarrow b$滿足|${\overrightarrow a$+$\overrightarrow b}$|=|${\overrightarrow a$-$\overrightarrow b}$|,若向量為非零向量,則$\overrightarrow a$⊥$\overrightarrow b$,故錯(cuò)誤;
③將函數(shù)y=2sin(2x+$\frac{π}{4}$)向右平移$\frac{3}{8}$π個(gè)單位,得y=2sin(2x-$\frac{π}{2}$)=-2cos2x,將圖象上每一點(diǎn)橫坐標(biāo)縮短為原來的$\frac{1}{2}$倍,所得函數(shù)為y=-2cos4x,故錯(cuò)誤;
④定義運(yùn)算$|\begin{array}{l}{a_1}\;\;\;\;{a_2}\\{b_1}\;\;\;\;{b_2}\end{array}|$=a1b2-a2b1,則函數(shù)f(x)=$|\begin{array}{l}{x^2}+3x\;\;\;\;\;1\\ x\;\;\;\;\;\;\;\;\;\;\;\frac{1}{3}x\end{array}|$=$\frac{1}{3}$x3+x2-x,
f'(x)=x2+2x-1,f'(1)=2,
的圖象在(1,$\frac{1}{3}$)處的切線方程為6x-3y+5=0,故錯(cuò)誤.
故答案為:①.
點(diǎn)評(píng) 考查了函數(shù)圖象的平移,導(dǎo)函數(shù)的概念和向量垂直的定義.屬于基礎(chǔ)題型,應(yīng)熟練掌握.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,+∞) | B. | (-1,0) | C. | (-2,+∞) | D. | (-2,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -e | B. | -1 | C. | 1 | D. | e |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{1}{2}$) | B. | (0,1) | C. | ($\frac{1}{2}$,1) | D. | (0,+∞) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com